The Bibliometric Analysis of the Alcohol-induced Muscle Disease Based on CiteSpace
DOI:
https://doi.org/10.29038/2617-4723-2020-390-2-72-82Ключові слова:
Citespace, alcoholic myopathy, Visualization atlas, ROS, autophagy, antioxidants, Hotspot of ScienceАнотація
Myopathy of the skeletal muscles is caused by excessive misuse of ethanol and affects half to two-thirds of pathological alcohol abusers. It is possible to identify alcohol-induced skeletal muscle disruptions as either 'acute or chronic'. Medium to moderate alcohol has positive or defensive effects (such as cardiovascular) on some organ systems, but long-term drinking and acute toxicity can adversely impact multiple organ systems and potentially increase mortality. Therefore we need a detailed understanding of the study status of alcoholic myopathy. References for researching alcoholic myopathy can be given by the review of this article.
Search the Web of Science (WOS) central archive for alcoholic myopathy research papers from 2000 to 2020, and use CiteSpace and WOS databases for their own literature statistics techniques to evaluate the number of written articles, research organizations, citations to literature and identification of keywords.
A total of 947 publications were collected after screening and the number of articles published grew year by year. The average number of released publications is 47.355. Most documents have been released by a total of 7 countries. Among them, 397 papers were published by the US, ranked first among all nations. Its intermediate centrality is also the largest, suggesting that other countries have more recognition of its scientific findings. The papers published by Emory Univ and Kobe Univ are well regarded in the field, among the top 7 academic institutions with publication volumes. There are 28 core authors and a total of 263 written articles. Highly cited papers are classified into 40 categories, of which 11 are prominently clustered categories. Co-occurrence study of keywords reveals that keywords such as skeletal muscle, oxidative stress, ethanol, alcohol, etc. are very common. The literature on alcoholic myopathy is primarily focused in Western countries, and autophagy, ROS and antioxidants are the latest study hotspots.
Посилання
2. Preedy, V. R.; Adachi, J.; Peters, T. J.; Worrall, S.; Parkkila, S.; Niemela, O.; Asamo, M.; Ueno, Y.; Takeda, K.; Yamauchi, M.; others. Recent advances in the pathology of alcoholic myopathy. Alcoholism: Clinical and Experimental Research 2001, 25, pp 54–59.
3. Urbano-Marquez, A.; Estruch, R.; Navarro-Lopez, F.; Grau, J. M.; Mont, L.; Rubin, E. The effects of alcoholism on skeletal and cardiac muscle. New England Journal of Medicine 1989, 320 (7), pp 409–415.
4. Simon, L.; Jolley, S. E.; Molina, P. E. Alcoholic myopathy: pathophysiologic mechanisms and clinical implications. Alcohol research: current reviews 2017, 38 (2), p 207.
5. Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for information Science and Technology 2006, 57 (3), pp 359–377.
6. Chen, C.; Hu, Z.; Liu, S.; Tseng, H. Emerging trends in regenerative medicine: a scientometric analysis in CiteSpace. Expert opinion on biological therapy 2012,
12 (5), pp 593–608.
7. Zong Shuping. Evaluation of core authors based on Price law and the com prehensive index method: a case study of Chinese Journal of Scientific and Technical Periodicals. Chinese Journal of Scientific and Technical Periodicals 2016, 27 (12), pp 1310–1314.
8. Vinood, B. P.; Simon, W.; Emery, P. W.; Preedy, V. R. Protein adduct species in muscle and liver of rats following acute ethanol administration. Alcohol & Alcoholism 2005, 40 (6), 485.
9. Freeman, T. L.; Tuma, D. J.; Thiele, G. M.; Klassen, L. W.; Worrall, S.; Onni Niemel; Parkkila, S.; Emery, P. W.; Preedy, V. R. Recent Advances in Alcohol-Induced Adduct Formation Alcoholism: Clinical and Experimental Research 2005, 29 (7), pp 1310–16.
10. Preedy, V. R.; Adachi, J.; Ueno, Y.; Ahmed, S.; Mantle, D.; Mullatti, N.; Rajendram, R.; Peters, T. J. Alcoholic skeletal muscle myopathy: definitions, features, contribution of neuropathy, impact and diagnosis. European Journal of Neurology 2001, 8 (6).
11. Preedy, V. R.; Ohlendieck, K.; Adachi, J.; Koll, M.; Sneddon, A.; Hunter, R.; Rajendram, R.; Mantle, D.; Peters, T. J. The importance of alcohol-induced muscle
disease. Journal of Muscle Research & Cell Motility 2003, 24 (1), pp 55–63.
12. Zhou, S.; Bailey, M. J.; Dunn, M. J.; Preedy, V. R.; Emery, P. W. A quantitative investigation into the losses of proteins at different stages of a two dimensional gel electrophoresis procedure. Proteomics 2005, 5.
13. Steiner, J. L.; Lang, C. H. Dysregulation of skeletal muscle protein metabolism by alcohol. Am J Physiol Endocrinol Metab 2015, 308 (9), p 699.
14. Gordon, B. S.; Williamson, D. L.; Lang, C. H.; Jefferson, L. S.; Kimball, S. R. Nutrient-Induced Stimulation of Protein Synthesis in Mouse Skeletal Muscle Is Limited by the mTORC1 Repressor REDD1. Journal of Nutrition 2015, 145 (4), 708.
15. Lang, C. H.; Frost, R. A.; Bronson, S. K.; Lynch, C. J.; Vary, T. C. Skeletal muscle protein balance in mTOR heterozygous mice in response to inflammation and leucine. American Journal of Physiology: Endocrinology & Metabolism 2010, 61 (6), pp 1283–1294.
16. Frost, R. A.; Lang, C. H. Protein Kinase B / Akt: A Nexus of Growth Factor and Cytokine Signaling in Determining Muscle Mass. Journal of Applied Physiology 2007, 103 (1), pp 378–387.
17. Vary, T. C.; Frost, R. A.; Lang, C. H. Acute alcohol intoxication increases atrogin-1 and MuRF1 mRNA without increasing proteolysis in skeletal muscle. AJP Regulatory Integrative and Comparative Physiology 2008, 294 (6), pp 1777–1789.
18. Eisner, V.; Lenaers, G.; Hajnoczky, G. Mitochondrial fusion is frequent in skeletal muscle and supports excitation–contraction coupling. Journal of Cell Biology 2014, 205 (2), pp 179–195.
19. Picard, M.; Azuelos, I.; Jung, B.; Giordano, C.; Matecki, S.; Hussain, S.; White, K.; Li, T.; Liang, F.; Benedetti, A. Mechanical ventilation triggers abnormal mitochondrial dynamics and morphology in the diaphragm. Journal of Applied Physiology 2015, 118 (9).
20. Kandul, N. P.; Zhang, T.; Hay, B. A.; Guo, M. Selective removal of deletion-bearing mitochondrial DNA in heteroplasmic Drosophila. Nature Communications. 7, 13100 (2016). URL: https://doi.org/10.1038/ncomms13100
21. De Palma, C.; Morisi, F.; Pambianco, S.; Assi, E.; Touvier, T.; Russo, S.; Perrotta, C.; Romanello, V.; Carnio, S.; Cappello, V.; others. Deficient nitric oxide signalling impairs skeletal muscle growth and performance: involvement of mitochondrial dysregulation. Skeletal muscle 2014, 4 (1), p 22.
22. Malik, Z. A.; Kott, K. S.; Poe, A. J.; Kuo, T.; Chen, L.; Ferrara, K. W.; Knowlton, A. A. Cardiac myocyte exosomes: stability, HSP60, and proteomics. AJP: Heart and Circulatory Physiology 2013, 304 (7), pp 954–965.
23. Lang, C. H.; Frost, R. .; Bronson, S. K.; Lynch, C. J.; Vary, T. C. Skeletal muscle protein balance in mTOR heterozygous mice in response to inflammation and leucine. American Journal of Physiology: Endocrinology & Metabolism 2010, 61 (6), pp 1283–1294.
24. Chen Yue; Chen Chaomei; Methodological function of CiteSpace knowledge graph. Studies in Science of Science 2015, 33 (02), pp 242–253.
25. Secretariat of the World Health Organization. Strategies to reduce harmful use of alcohol. Resolution report, 2008.
26. Liu Jian; Liu Lin; Tang Lin; Yang Hui; Han Yuan-shan; Wang Yu-hong. Protective effect of Zuogui Jiangtang Jieyu Formula against damage of hippocampal neuron of NVU induced by mitophagy via mTOR pathway in diabetes mellitus with depression. China Journal of Traditional Chinese Medicine and Pharmacy 2020, 35 (09), pp 4631–4636.
27. Steiner, J.; Lang, C. Dysregulation of skeletal muscle protein metabolism by alcohol. American journal of physiology. Endocrinology and metabolism 2015, 308 (9), pp 699–712.
28. Bertero, E.; Kutschka, I.; Maack, C.; Dudek, J. Cardiolipin remodeling in Barth syndrome and other hereditary cardiomyopathies. Biochimica et biophysica acta-molecular basis of disease 2020, 1866 (8). DOI: 10.1016/j.bbadis.2020.165803.
29. Мотузюк, О. П.; Ноздренко, Д. М.; Богуцька, К. І.; Ременяк, О. В.; Прилуцький, Ю. І. Морфологічні зміни в ішемізованих м’язових волокнах musculus soleus за хронічної алкоголізації тварин та використання водного колоїдного розчину С60-фулеренів. Наносистеми, наноматеріали, нанотехнології 2019, 17 (1), c 207–224.
30. Ноздренко, Д. М.; Зай, С. Ю.; Мотузюк, О. П.; Богуцька, К. І.; Ільченко, О. В.; Прилуцький, Ю. І. Вплив фулеренів С60 на механокінетичні та біохемічні параметри скорочення muscle soleus хронічноалкоголізованих щурів з експериментально індукованою ішемією. Наносистеми, наноматеріали, нанотехнології 2018, 16 (3), c 583–595.