“Omic tools” for investigation creative plant systens

Автор(и)

DOI:

https://doi.org/10.29038/NCBio.24.1-5

Ключові слова:

ionomics; proteomics; metabolomics; transcriptomics; biological systems

Анотація

The result of the genotype/environment (G/E) interaction affects the success of the implementation of the genetic program of a plant biological system of any level, from a cell population to a multicellular organism. During this interaction, the plant system absorbs trophic and energy resources, processes and assimilates them. Under normal conditions, signal perception and transduction occurs against the background of homeostasis regulated by the genome. Genetic control is exercised at all stages of growth and development of plant systems via differential gene expression. The activity of metabolism is coordinated by the cooparated action of the ionome, proteome, metabolome, and transcriptome. Direct and cross connections between these aspects of life activity are established and developed constantly and manifest themselves in the form of dynamic phenotypic effects from structural formations and enzyme chains. Disturbanses within the individual stages of metabolism and the disconnection between them reveal differences between stable, sensitive and unstable forms. The obtained information is the basis for experiments to obtain forms with improved characteristics. A range of tasks has been outlined in this direction, and there have already been significant developments. Comparison of the dynamics of the functioning of creative variants of plant systems of any level showed their significant differences from the original forms. Changes in creative systems are determined by the interactions of transgenes with endogenous genes and can manifest themselves in the form of positive/negative/combined characteristics of the new system. Comparative studies of the dynamics of vital activity will provide information about the coordinated process of communication both within the cell and between the tissues of a multicellular organism.

The use of various combinations of “omic tools” will facilitate the discovery of new promising candidates among structural and regulatory genes, as well as among promoters. On the other hand, the obtained biological information will be a stimulus for improving the methods and directions of research.

Посилання

Norouzi, O.; Hesami, M.; Pepe, M; Duta, A.; Jones, A.M.P. In vitro plant culture as the fifth generation of bioenergy. Scientific Reports. 2022, 12. 5038 – 5054. https://doi.org/10.1038/s41598-022-09066-3

Irman, Q.M; Falak, N.; Hussain, A.; Mun, B.G.M.; Yun, B.W. Abiotic stress in plants; stress perception to molecular response and role of biotechnological tools in stress resistance. Agronomy. 2021. 11. 1579 – 1599. https://doi.org/10.3390/agronomy1108579

Tanaka, K.; Muddil, Y.; Tunc-Ozdemir, M. Editorial: abiotic stress plant immunity – a challenge in climate. Frontiles in Plant Sci. 2023. 1-23. https://doi.org/10.3389/fpis2023.1197435

Maliga, P. Isolation and characterization of mutants in plant cell culture. Ann. Rev. Plant Physiol. 1984. 35. 519-542.

Szabados, L.; Savouré, A. Proline: A multifunctional amino acid. Trends Plant Sci. 2010. 15. 89-97. https://doi.org/10.1016/j.tplants.2009.11.009

Melo, de B.P.; Avelar Carpinetti, de P.; Teixeira Fraga, O.; Rodriges-Silva, P.L.; Sartori Fioresi, V.; Camargos, de L.F.; Silva Ferreira, da M.F. Abiotic stresses in plant and their marcers: a practice view of plant stress responses and programmed cell death mechanisms. Plant. 2022. 11. 1100-1111. https://doi.org/10.3390/plants11091100

Van Montagu, M. The future of plant biotechnology in a globalized and environmentally endangered word. Genet. Mol. Biol. 2020. 43(1). 1 – 23. https://doi.org/10.1590/1678-4685-GMB-2019-0040

Sandroni, M.; Lijeroth, E.; Mulugeta ,T.; Alexandersson, E. Plant resistance inducers (PEIs): perspectives for future disease management in the field. CAB Reviews. 2020. 15(001). 1 – 10. https://doi.org/10.1079/PAVSNNR202015001

Koiwa, H.; Bressan, R.A.; Hasegawa, P.M. Identification of plant stress-responsive determinants in Arabidopsis by large-scale – forwars genetic screens. J.Exp. Bot. 2006. 57(5). 1119-1128. https://doi.org/10.1093/jxb/erj093

Rus, A.; Lee, B.; Muñoz-Mayor, A.; Sharjhuu, A.; Miura, K.; Zhu, J-K.; Bressan, R.A., Hassegava, P.M. Plant Physiol. 2004. 136(1). 2500-2511. https://doi.org/10.1104/pp.104.042234

Surosz, W.; Palinska, K.A. Ultrastrural changes inderced by selected cadmium and copper concentration in the cyanobacterium Phormidiun: interaction with salinity. J.Plant Physiol. 2000. 157. 643–650. https://doi.org/10.1016/S0176-1617(00)80007-3

Liu, Z.; Faizan, M.; Zheng, L.; Cui, L.; Han, C.; Chen, H. Nanoparticles enhance plant resistance to abiotic stresses: a bibliometric statistic. Agronomy. 2023. 13. 729. https://doi.org/10.3390/agronomy13030729

Rus, A.M.; Panoff, M.; Perez-Alfocea, F.; Bolarin, M.C.J. NaCl Responses in tomato calli and whole plants. Plant Physiol. 1999. 155. 727-733. https://doi.org/10.1016/S0176-1617(99)80089-3

Junko, T.; Shunnosuke, A.; Hiromishi, M.; Mitsugi, S. Proc. 5 Int. Congr. Plant Tissue Cult. Tokyo. 1982. 627-628.

Tavernier, E.; Wendehenne, D.; Blein, J.-P.; Pugin, A. Involvement of free calcium in action of criptogein, a proteinaceous elicitor of hypersensitive reaction in tobacco cells. Plant Physiol. 1995. 109. 1025-1031. https://doi.org/10.1104/pp.109.3.1025

Huang, X.H.; Salt, D.E. Plant ionomics: from elemental profiling to environmental adaptation. Molec. Plant. 2016. 9(6). 787-797. https://doi.org/10.1016/j.molp.2016.05.003

Chaddad, Z.; Kaddouri, K.; Smouni, A.; Mossbad el Idrissi, M.; Taha, K.; Hayah, I.; Badaoui, B. Meta – analisis of Arabidopsis thaliana microarray data in rlation to heat stress response. Frontiers in Plant Sci. 2023. 14. 1250728. https://doi.org/10.3389/fpls.2023.1250728

Baxter, I.J. Should we treat the ionome as a combination of individual elements, or should we be deriving novel combined traits? J. Exp. Bot. 2015. 66. 2127-2131.

Forsberg, S.K.G.; Andreatta, M.E.; Huang, X.Y.; Dancu, J.; Salt, D.E.; Carlborg, Ö.The multi – allelic genetic architecture of variance – heterogeneity locus for molybdenum concentration in leaves acts as a source of unexplained additive genetic variance. PLoS Genetics. 2015. https://doi.org/10.1371/journal.pgen.1005648

Salt, D.E.; Baxter, I.; Lahner, B. Ionomics and the study of the Plant Ionome. Ann. Rev. Plant Biol. 2008. 59. 709-733. https://doi.org/10.1146/annurev.avolant.59.032607.092942

Baxter, I.; Hosmani, P.S.; Rus, A.; Lahner, B.; Dorevitz, J.O.; Multhukumar, B.; Mickelbart, M.V.; Schreiber, L.; France, R.B.; Salt, D.E. Root soberin forms, an extracellular barnier that affects water relations and mineral nutrition in Arabidopsis. PLoS Genetics. 2009. 5. https://doi.org/10.1371/journal.pgen.1000492

Tian, H.; Baxter, I.; Lahner, B.; Reinders, A.; Salt, D.E.; Ward, J.M.; Notes, A. Arabidopsis NPCC6/NaKR1 is a phloem mobilc metal binding protein necessary for phloem function and root meristem maintenance. Plant Cell. 2013. 22. 3963-3979. https://doi.org/10.1105/tpc.110.080010

Lorraine, W.; Salt, D.E. The plant ionome comimg into focus. Curr. Op. Plant. Biol. 2009. 12. 247-249. https://doi.org/10.1016/j.pbi.2009.05.009

Chao, D.Y.; Gable, K.; Chen, M.; Baxter, I.; Dietrich, C.R.; Cahoon, E.B.; Guerinot, M.L.; Lahner, B.; Lű, S.; Han, G.; Gupta, S.D.; Harman, J.M.; Jaworski, J.G.; Dunn, T.M.; Salt, D.E. Sphingolipids in the root play an important role in regulating the leaft ionime in Arabidopsis thaliana. Plant Cell. 2011. 23(3). 1061-1081. https://doi.org/10.1105/tpc.110.079095

Kaiser, B.N.; Griedley, K.L.; Brady, J.N.; Philips, T.; Tyerman, S.D. The role of molybdenum in agricultural plant production. Ann. of Botany. 2005. 96(5). 745 – 754. https://doi.org/10.1093/aob/mci226

Rajput, V.D., Minkina, T.; Harish, A.K.; Sing, V.K.; Verna, K.K.; Mandzieva, S.; Sushkova, S.; Keswani, C. Coping with the challenges of abiotic stress in plants: new dimensions in the field application of nanoparticles. Plants. 2021. 10. 1221 – 1235. https://doi.org/10.3390/plants10061221

Abrar, M.M.; Sohail, M; Saqib, M.; Akhtar, J.; Abbas, G.; Wahab, H.A.; Mumtaz, M.Z.; Mehmood, K.; Memon, M.S.; Sun, N.; Xu, M. Interactive salinity and water stress saverely reduced the growth, stress tolerance, and physiological responres of guava (Psidium guajava L.). Scientific Reports. 2022. 12. 18952. https://doi.org/10.1038/s41598-022-22602-5

Zhao, C.; Zhang, H.; Song, C.; Zhu, J.K.; Shabala, S. Mechanisms of Plant responses and adaption to soil salinity. The innovation. 2020. https://doi.org/10.1016/j.xinn.2020.100017

Sunarpi Horie, T.; Motoda, J.; Kubo, M.; Yang, H.; Yoda, K.; Horie, R.; Chan, W.Y.; Leung, H.Y.; Hattori, K.; Konomi, M.; Osumi, M.; Yamagamy, M.; Schroeder, Y.I. Enhanced salt tolerance mediated by AtHKT1 tranporter – induced Na+ unloading from xylem vessels to xylem parenchymz cells. Plant J. 2005. 44. 928-938. https://doi.org/10.1111/j.1365-313X.2005.02595.x

Rus, A.; Lee, B.; Muňos-Mayor, A.; Sharkhuu, A.; Miura, K.; Zhu, J.K.; Bressan, R.A.; Hasegava, P.M. AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta. Plant Physiol. 2004. 136. 2500-2511. https://doi.org/10.1104/pp.104.042234

Rubio, F.; Aleman, F.; Nieves-Cordones, M.; Vicente, M. Studies on Arabidopsis athak5, atakt1 double mutants disclose the range of concentrations at whicgh AtHAKS, AtAKT1 and unknown sistems mediate K+ uptake. Physiol. Plant. 2010. 139. 220-228.

Pinson, S.R.M.; Tarpley, L.; Yan, W.; Yeater, K.; Lahner, B.; Yakubova, E.; Huang, X.Y.; Zhang, M.; Guerinot, M.L.; Salt, D.E. Worldwide genetic diversity for mineral element concentration in rice grain. Crop Sci. 2015. 55. 294-311. https://doi.org/10.2135/cropsci2013.10.0656

Ueno, D.; Yamaji, N.; Kono, I.; Huang, C.F.; Ando, T.; Yano, M.; Ma, J. Gene limiting cadmium accumulation in rice. Proc. Natl. Acad. Sci. USA. 2010 107. 6500-1650.

Baxter, I.; Gustin, J.L.; Settles, A.M.; Hoekenga, O.A. Ionomic characterization of maize kernels in the intermated B73*Mo17population. Crop Sci. 2013. 53. 208-210. https://doi.org/10.2135/cropsci2012.02.0135

Gu, R.; Chen, F.; Liu, Y.; Wang, X.; Liu, J.; Pan, O.; Pace, J.; Soomro A.A.; Lübberstedt, A.; Mi, G.; Yuan, L. Comprehensive phenotypic analisis and identification for grain mineral concentration, content yield in maize (Zea maize L.). Theor Appl. Genet. 2015. 128. 1277-1289. https://doi.org/ 10.1007/s00122-015-2546-5

Wu, D.; Shen, Q.; Cai, О.; Chen, Z.H.; Dai, F.; Zang, G. Ionomic responses and correlation between element and metabolites under salt strees in wild and cultivated barley. Plant Cell Physiol. 2013. 54. 1976-1988. https://doi.org/10.1093/pcp/pct134

Ziegler, G.; Terauchi, A.; Becker, A.; Armstong, P.; Hudson, K; Baxter, I. Ionomic screening of field – grown soybean identifies mutant with altered elemental composition. Plant Genome. 2013. 6(2). 1-9. https://doi.org/10.3835/plantgenome2012.07.0012

James, R.A.; Davenport, R.J.; Munns, R. Physiological characterization of two genes of Na+ exclusion in durum wheat Nax1 and Nax2. Plant Physiol. 2006. 142. 1537-1547. https://doi.org/10.1104/pp.106.086538

Hagenbuch, B.; Meier, P.J. The superfamily of organic anion transporting polipeptides. Biochim. Biophys. Acta. 2003. 1609. 1-18. https://doi.org/10.1016/S0005-2736(02)00633-8

Sakano, K. Proton/phosphate stoichiometry in uptake of inorganic phosphate by cultured cell of Catharanthus roseus (L.) G. Don. Plant. Physiol. 1990. 93. 479-483.

Cookson, S.J.; Williams, L.E.; Miller, A.J. Light – dark cheangers in cytosolic nitrate pools depend of nitrate reductase activity in Arabidopsis leaf cell. Plant Physiol. 2005. 138. 1097-1105. https://doi.org/10.1104/pp.105.062349

Singh H.N.; Chakravarty D.; Srinivasa, R.K.; Singh, A.K.J. Vanadium requirement for growth on N2 or nitrate as nitrogen source in a tundsten – resistant mutant of the cyanobacterium Nostoc muscorum. Basic Microb. 1993. 3. 201-205. https://doi.org/10.1002/jobm.3620330312

Singh, H.N.; Vaushampayan, A.; Sonie, K.S. Mutation from molibdeum – dependent growth to tungsten – dependent drown and further evidence for a genetic determinant common to nitrogenase and nitrate reductase in the blue – green alga Nostoc muscorum. Mut. Res. 1978. 50. 427-432. https://doi.org/10.1016/0027-5107(78)90047-7

Hamada, T.; Nagasaki-Takeuchi, N.; Kato, T.L.; Fujiwara, M.; Sonobe, S.; Fukae, Y.; Hashimoto, T.; Notes, A. Purification and characterization of novel microtubule – associate protein from Arabidopsis cell suspension cultures. Plant Physiol. 2013. 163(4). 1804-1816. https://doi.org/10.1104/pp.113.225607

Goswami, A.K.; Maura, N.K.; Goswami, S.; Bardman, K.; Sing, S.K.; Prakash Pradhan, S.; Kumar, J.; Chinnusamy, V.; Kumar, P.; Sharma, R.M.; Sharma, S.; Bisgt, D.S. Physio – biochemical and molecular sress regulators and their crosstalk for low-temperature stress responsesvin fruit cros: a review. Frontiers in Plant Sci. 2022. 12. 1 – 18. https://doi.org/10.3389/fpls2022.1022167

Xin, Z. Mutagenesis in the age of next – generation – sequencing and genone editing. Plants. 2023. 12. 3403. https://doi.org/10.3390/plants12193403

Char, SN.; Unger-Wallace, E.; Frame – Briggs, S.A.; Main, M.; Spaldind, M.H.; Vollbrecht, E.; Wang, K.; Yang, B. Heritable sitwe – specific mutagenesis using TALENs in maize. Plant Biotech. J. 2015. 13(7). 1002-1010 https://doi.org/10.1111/pbi12344

Jiang, N.; Yang, Z.; Xu, L.; Li, C. Effect of low temperatute on photosynthetic physiological activity of different photoperiod types of strawberry seedligs and stress diagnosis. Agronomy. 2023. 13. 1321 – 1333. https://doi.org/10.3390/agronomy13511321

Chaundary, S.; Devi, P.; Rao, B.H.; Jha, U.C.; Sharma, K.D.; Prasad, P.V.V.; Kumar, S.; Siddique, K.H.M.; Nayyar, H. Physiological for developing thermotolerance in vegetable crops: a growth, yield and sustenance perspective. Front. Plant Sci. 2022. 13. 8784498. https://doi.org/10.389/fpls.2022.8784498

Khomenko, L. Creation of winter wheat source material with increased adaptive potential to adverse environmental conditions. EUREKA: Life Sciences. 2021. 6. 25-33. https://doi.org/10.21303/2504-5695.2021.00218

Vidal, L.S.; Isalan, M.; Heap, J.T.; Ledesma – Amaro, R. A primer to directed evolution: current methodologies and future directions. RSC Chem. Biol. 2023. 4. 271 – 291. https://doi.org/10.1039/d2cb00231k

Silva, D.; Santos, G.; Barroca, M.; Costa, D.; Collins, T. Inversr PCR for ste – directed mutagenesis. Methods Mol. Biol. 2023. 2967. 223 – 238. https://doi.org/10.1007/978-1-0716-3358-8_18

Storici, F.; Lewis, L.K.; Resnik, M.A. In vivo site-directed mutagenesis using oligonucleotides. Nat. Biothech. 2000. 19. 773-776. https://doi.org/10ю1038/98837

Himmelbach, A.; Zierold, U.; Hensel, G.; Riechen, J.; Douchkov, D.; Schweizer, P.K. A set of modular binary vectors for transformation of cereals. Plant Phys. 2007. 145. 1192-1200. https://doi.org/10.1104/pp.107.111575

Khan, M.I.R.; Kumari, S.; Nazir, F.; Khanna, R.R.; Gupta, R.; Chhilar, H. Deferensive role f plsnt hormones in advancing aviotic stress-resistance rise plant. Rice Sci. 2023. 30(1). 15 – 35. https://doi.org/10.1016/j.rsci.2022.08.002

Bharadwaj, P.S.; Sanchez, L.; Li, D.; Enyi, D.; Van de Poel, B.; Chang, C. The plant hormone ethylene promotes abiotic stress tolerance in the liverwort Marchantia polymorpha. Frntiers in Plant Sci. 2022. 13.998267. https://doi.org/10.3389/fpls.2022.998267

Guajardo, E.; Juan, A.C.; Contreras-Porcia, L. Role of abscisic acid (ABA) in activating antioxidant tolerance responses to desiccation stress in intertidal seaweed species. Planta. 2016. 243. 767-781. https://doi.org/10.1007/s00425-015-2438-6

Le Martret, B.; Poage, M.; Shiel, R.; Nugent, G.D.; Dix, P.J. Tobacco chloroplast transformants expressing genes encoding dehydroascorbate reductase, gluthatione reductase and glutathione-S-transferase exhibit altered anti-oxidant metabolism and improved abiotic stress tolerance. Plant Biotechnol. J. 2011. 9(6). 661-673. https://doi.org/10.1111/j.1467-7652.2011.0061.x

Pardo, J.M.; Reddy, M.P.; Yang, S.L.; Meygio, A.; Huh, G.H.; Matsumoto, T.; Coca M.A.; Paino – Durago, M.; Koiwa, H.; Yun, D.J.; Wataol, A.A.; Bressan, R.A.; Hasegawa, P.M. Stress signaling throngh Ca2+/calmachulin – dependent protein phosphatase calcineurin mediates salt adaption in plant. Proc. Nat. Acad. Sci. USA. 1998; 95; 9681-9686.

Veena, V.S.; Reddy, S.K. Glyoxalase 1 from Brassica juncea: molecular doning, regulation and its over – expression confer tolerance in transgenic tobacco under stress. Plant J. 1999. 17. 385-395. https://doi.org/10.1046/ j.1365-313X.1999.00390.x

Katiyar-Agarwal, S.; Zhu, J.; Kim, K. et al. The plasma membrane Na+/H+ antiporter SOS1 interacts with RCD1 and functions in oxidative stress in Arabidopsis PNAS. 2006. 103. 18816-18921.

Oh, D.H.; Leidi, E.; Zhang, Q.; Hwang, S.M.; Li, Y.; Quintero, F.J.; Jiang, X.; D’Urzo, M.P.; Lee, S.Y.; Zhao, Y.; Bahk, J.D.; Bressan, R.A.; Yun, D.J.; Pardo, J.M.; Bohnert, H.J. Loss halophilism by interference with SOS1 expression. Plant Physiol. 2009. 151. 210-222. https://doi.org/10.1104/pp.109.137802

Shi, H.; Ishitani, M.; Wu, S.J. et al. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. PNAS. 2000. 97. 6896-6901.

Alseekh, S.; Fernie, A.R. Metabolomic 20 years on: what have we learned and what hurdles remain? Plant J. 2018. 94. 933-942. https://doi.org/10.1111/tpj.13950

D'Auria, J.C.; Gershenson, J. The secondary metabolism of Arabidopsis thaliana: growing like a weed. Curr. Opin. Plant Biol. 2005. 8. 308-316. https://doi.org/10.1016/j.pbi.2005.03.012

Fernie, A.R.; Trethewey, R.N.; Krotzky, A.J.; Willmitzer, L. Innovation – metabolite profiling: from diagnostics to systems biology. Nat. Rev. Mol. Cell Biol. 2004. 5. 763-769.

Sweetlove, L.J.; Fernie, A.R. The spatial organization of mentalism within the plant cell. Annu. Rev. Plant Biol. 2013. 64. 723-746. https://doi.org/10.1146/annurev-arplant-050312-120233

Fernie, A.R.; Tohge, T. The genetic of plant metabolism. Annu. Rev. Genet. 2017. 51. P.287-310. https://doi.org/10.1146/annurev-genet-120116-024640

Horn, P.J.; Chapman, K.D. Imaging plant metalism in situ. J. of Exp. Botany. 2023. 27. 1 – 17. https://doi.org/10.1093/jxb/erad423

Puzanskiy, R.; Tarakhovskaya, E.; Shavarda, A.; Shishova, M. Metabolomic and physiological changes of Chlamydomonas reinhardtii (Chlorophyceae, Chlorophyta) durind batch culture development. J. App. Phycol. 2018. 30(2). 803-818. https://doi.org/10.1007/s10811-017-1326-9

Fiehn, O.; Kopka, J.; Dörmann, P.; Altman, T.; Trethewey, R.N.; Wilmizer, L. Metabolite profiling for plant functional genomics. Natur. Biotech. 2000. 18(11). 1157-1161. https://doi.org/10.1038/81137

Sumner, L.W.; Mendes, P.; Dixon, R.A. Plant metabolomics; large-scale phytochemistry in the functional genomics era. Phytochemistry. 2003. 62(6). 817-836. https://doi.org/10.1016/S0031-9422(02)00708-2

Guo, L.; Yu, H.; Li, Y.; Zhang, C.; Kharbach, M. Tensor methods in data analisis of chromatography/mass spectroscopy-based plat metbolomics. Plant Methods. 2023. 19(130). 1-13. https://doi.org/10.1186/s13007-023-01105-y

Piwecka, M.; Fiszer, A.; Rolle, K.; Olejniczak, M. RNA regulation in brain function and disease 2022 (NeuroRNA): a conference report. Front. Mol. Neurosci. 2023. 16. 1133209. https://doi.org/10.3389/fnmol.2023.1133209

Lytovchenko, A.; Bierberich, R.; Willmitzer, L.; Fernie, A.R. Carbon assimilation and metabolism in potato leaves deficient in plastidial phosphoglucomutase. Planta. 2002. 215(5). 802-811. https://doi.org/10.1007/s00425-002-0810-9

Fernie, A.R.; Tauberger, E.; Lytovchenko, A.; Roessner, U.; Willmitzer, L.; Trethewey, R.N. Antisense repression os cytosolic phosphoglucomutase in potato Solanum tuberosum results in severe growth retardation, reduction in tuber number and altered carbon metabolisms. Planta. 2002. 214(4). 510-520. https://doi.org/10.1007/s00425/00644

Davies, H.V.; Shepherd, L.V.; Burrell, M.M.; Carrari, F.; Urbanczyk-Wochniak, E.; Leisse, P.; Hancock, R.D.; Taylor, M.; Viola, R.К.; Ross, H.; McvRae, D.; Willimitzer, L.; Fernie, A.R. Modulation of fructolinse activiry of potato (Solanum tuberosum) result in substantial shifts in tuber metabolism. Plant Cell Physiol. 2005. 46(7). P. 1103-1115. https://doi.org/10.1093/pcp/pci123

Sun, W.; Chen, Z.; Hong, J.; Shi, J. Promoting human nutrition and health through plant metabolomics: current status and challenges. Biology; 2020. 10. 1 – 20. https://doi.org/10.3390/biology10010020

Xiao, Q.; Mu, X.; Liu, J.; Li, B.; Liu, H.; Zhang, B.; Xiao, P. Plant metabolomics: a new strategy and tool for quality evalution of Chinese medicinal material. Chinese Medicine. 2022. 17(45). 1 – 15. https://doi.org/10.1186/s13020-022-00601-y

Wang, K.; Riaz, B.; Ye, X. Wheat genome editing expedited by efficient transformation techniques: progress and perspectives. Crop J. 2018. 6(1). 22-31

Fukusima, A.; Takahashi, M.; Nagasaki, H.; Aono, Y.; Kobayashi, M.; Kusano, M.; Saito, K.; Kobayshi, N.; Arita, M. Development of RIKEN plant metabolome metadabase. Plant Cell Physiology; 2022. 63(3). 433 – 440. https://doi.org/10.1093/pcp/pcav173

Aharoni, A.; Goodacre, R.; Fernie, A.R. Plant and microbial sciences as key drives in the development of metabolomics research. PNAS; 2023. 120(12). 1 – 12. https://doi.org/10.1073/pnas.2217383120

Pavei, D.; Gonçalves-Vidigal, M.C.; Schuelter, A.R.; Schuster, L.; Vieira, E.S.N.; Vendruscolo, E.C.G.; Poletine, J.P. Response to water stress in transgenic (p5cs gene) wheat plants (Triticum aestivum L.). Aust. J. Crop Sci. 2016. 10(6). 776-7833. https://doi.org/10.21475/ajcs.2016.10.06.p7000

Munaweera, T.I.; Jayawardana, N.U.; Rajaratnam, R.; Dissanayah, N. Modern plant biotechnology as a strategy in addressing dimate cheage and atainsy food security. Agryculture and food security. 2022. 11(26). 1 – 28. https://doi.org/10.1186/s40066-022-00369-2

Siripornadulsil, S.; Traina, S.; Verma, D.P.S.; Sayre, R.T. Molecular mechanisms of proline-mediated tolerance to toxic heavy metal transgenic microalgae. Plant Cell. 2002. 14. 2837-2847. https://doi.org/10.1105/tpc 004853

Herbic, A.; Giritch, A.; Hortsmann, C.; Becker, R.; Balzer, H.J.; Baumlein, H.; Stephan, U.W. Iron and copper nutrition-dependent changes in protein expression in a tomato wild type and nicotinamine-free mutant Chloronerva Plant Physiol. 1996. 111. 533-540. https://doi.org/10.1104/pp.111.2.533

Wijerathna – Yapa, A.; Hiti – Bandaralage, J. Tissue culture – a sustainable Approach to explore plant stresses. Life. 2023. 13. 780 – 796. https://doi.org/10.3390/life13030780

Hanson, J.; Hanssen, M.; Wiese, A.; Hendriks, V.V.W.B.; Smeekens, S. The sucrose regulated transcription factor bZIP11 affects amino acid metabolism by regulating the expression of Asparagine synthetase1 and Proline dehydrogenase2. Plant J. 2008. 53(6). 935-949. https://doi.org/10.1111/j.1365-313X.2007.03385.x

Nakashima, K.; Ito, Y.; Yamaguchi-Shinozaki, K. Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and Glasses. Plant Physiol. 2009. 149. 88-95. https://doi.org/10.1104/pp.108.129791

Tootle, T.L.; Rebay, I. Post-translocational modification influence transcription factor activity. Bioess. 2005. 27(3). 285-298.

Liu, W.; Yuan, J.S.; Stewart, C.N.Jr. Advanced genetic tools for plant biotechnology. Nat. Rev. Genet. 2013. 14. 781-793. https://doi.org/10.1038/nrg3583

Liu, W.; Stewart, C.N.Jr. Plant synthetic promoters and transcription factos. Curr. Opin. Biotech. 2016. 37. 36-44. http://dx.doi.org/10.1016/j.copbio.2015.10.001

Wang, X.; Elling, A.A.; Li, C.; Li, N.; Peng, Z.; He, G.; Sun, H.; Qi, J.; Liu, X.S.; Deng, X.W. Genome-wide and organ-specific landscapes of epigenetic modification and their relationships to mRNA and small RNA transcriptoms in maize. Plant Cell. 2009. 21. 1053-1069.

Tan, K.C.; Ipcho, S.V.S.; Trengove, R.D.; Oliver, R.P.; Solomon, P.S. Assesing the impact of trascriptomics, proteomics and metabolomics on fungal phytopatology. Plant Pathol. 2009. 17. 1636-1647.

Brady, S.M.; Long, T.A.; Benfey, P.N. Unraveling the dinsmic transcriptomic. Plant Cell. 2006. 18. 2101-2111. https://doi.org/10.1105/tpc.105.037572

Shaw, R.; Tian, X.; Xu, J. Single-cell transcriptome analisis in plants: advances and challenges. Molec. Plant. 2021. 1. 115-126.

Jin, T.; Chang, Q.; Li, W.; Jin, D.; Li, Z.; Wang, D.; Liu, B.; Liu, L. Stress-inducible expression of GmDREB1 conferred salt tolerance in transgenic alfalfa Plant Cell Tissue and Organ Culture. 2010. 100(2). 219-227. https://doi.org/10.1007/s11240-009-9628-5

Savitch, L.V.; Allard, G.; Seki.; M.S.L.; Robert, A.; Tingerm, N.P.A.; Huner, K.; Shinozakim, O.; Sing, J. The effect of overexpression of two Brassica CBF/DREB-like Transcription Factors on photosynthetic capacity and freezing tolerance in Brassica napus. Plant Cell Physiol. 2005. 46(9). 1525-1539. https://doi.org/10.1093/pcp/pci165

Tong, Z.; Hong, B.; Yang, Y.; Li, Q.; Ma, N.; Ma, C.; Gao, J. Overexpression of two chrysanthemum DgDREB1 group genes causing delayed flowering or dwarfism in Arabidopsis. Plant Mol. Biol. 2009. 71. 115-129. https://doi.org/10.1007/s11103-009-9513-y

Bovill, W.D.; Huang, C.Y.; McDonald, G.K. Genetic approaches to enhancing phosphorus-use efficiency (PUE) in crops: challenges and directions. Crop. Pasture Sc.; 2013. 64. 179-198. https://doi.org/10.1071/CP13135

Qu, B.; He, X.; Wang, J.; Zhao, Y.; Teng, W.; Shao, A.; Zhao, X.; Ma, W.; Wang, J.; Li, B.; Li, Z.; Tong, Y. Wheat CCAAT box-binding transcription factor increase the grain yield of wheat with less fertilizer input. Plant Physiol. 2015. 167(2). 411-423. https://doi.10.1104/pp.114.246959

Van de Wiel, C.C.M.; Van der Linden, C.G.; Scholten, O.E. Improving phosphorus use efficiency in agriculture: opportunities for breeding. Euphytica. 2016. 207(1). 1-22. https://doi.org/10.1007/s10681-015-1572-3

Zhang, Z.; Liao, H.; Lucas, W.J. Molecular mechanisms underlying phosphate sensing, signaling and adaptation in plants. J. Integr. Plant Biol. 2014. 56. 192-220. https://doi.10.1111/jipb.12163

Deng, X.M.; Zhou, S.Y.; Hu, W.; Feng, J.L.; Zhang, F.; Chen, L.H.; Chen, L.; Huang, C.; Luo, Q.; He, Y.; Yang, G.; He, G. Ectopic expression of wheat a CIPK14 encoding a calcineurin B-like protein-interacting protein kinase cofers salinity and cold tolerance in tobacco. Physiol. Plant. 2013. 149(3). 367-377. https://doi.10.1111/ppl.12046

Hu, W.; Huang, C.; Deng, X.M.; Zhou, S.Y.; Chen, L.H.; Li, Y.; Wang, C.; Ma, Z.; Yuan, Q.; Wang, Y.; Cai, R.; Liang, X.; Yang, G. TaASR1 a transcription factor gene in wheat confers drought stress tolerance in transgenic tobacco. Plant Cell Environ. 2013. 36(8). 1449-1464. https://doi.org/10.1111/pce.12074.

Licausi, F.; Giorgi, F.M.; Zenoni, S.; Osti, F.; Pezzotti, M.; Perata, P. Genomic and transciptomic analysis of the AP2/ERE superfamily in Vitis vinifera. BMC Genom. 2010. 11. 719. https://doi.org/101186/1471-2164-11-719.

Sharoni, A.M.; Nuruzzaman, M.; Satoh, K.; Shimizu, T.; Kondoh, H.; Sasaya, T.; Choi, I.R.; Omura, T.; Kikuchi, S. Gene structures, classification and expression models of the AP2/EREBP transcription factorfamily in rice. Plant Cell Physiol. 2010 52 344-360. https://doi.org/10.1093/pcp/pcq196

Shaw, R.; Tian, X.; Xu, J. Singe – cell transcriptome analisis in plants: advances and ahallenges. Molecular Plant. 2020. 14. 115 – 126. https://doi.org/10.1016/molp.2020.10.012

Mizoi, J.; Shinozaki, K.; Yamaguchi – Shinozaki, K. AP2/ERF family transcription factors in plant abiotic stresses. Bioch. Et Bioph. Acta. 2011. 1819. 86-96. https://doi.org/10.1016/j.bbagrm.2011.08.004

Yang, S.; Vanderbeld, B.; Wan, J.; Huang, Y. Narrowing down the targets: towards successful. Molecular Plant. 2010. 3(3). 469-490. https://doi.org/10.1093/mp/ssq016

Dombrecht, B.; Xue, G.P.; Sprague, S.J.; Kirkegaard, J.A.; Roos, J.J.; Ried, J.B.; Fitt, G.P.; Sewelam, N.; Schenk, P.M.; Manners, J.M.; Kazan, K. MYC2 differentially modulates diverse jasmonate-depends functions in Arabidopsis. Plant Cell. 2007. 19. 2225-2245. https://doi.org/10.1105/tpc.106.048017

Guo, J.; Pang, Q.; Wang, L.; Yu, P.; Li, N.; Yang, X. Proteomic identification of MYC2-dependent jasmonate-regulated proteins in Arabidopsis thaliana. Proteome Sci. 2012. 10. 1-13. https://doi.org/10.1186/1477-5956-10-57

Booth, M.W.; Breed, F.; Kendrick, G.A.; Bayer, P.; Severn – Ellis, A.A.; Sinclair, E.A. The company of Biologists. 2022. 11. 1 – 22. https://doi.org/10.1242/bio.059147

Yuan, Y.; Qi, L.; Yang, J.; Wu, C.; Liu, Y.; Huang, L.A. Scutellaria baicalensis R2R3-MYB gene SbMYB8 regulates flavonoid biosynthesis and improves droughstress tolerance in transgenic tobacco. Plant Cell Tiss. Organ Cult. 2015. 120. 91-972. https:// doi.org/10.1007/s11240-014-0686-y

Es-Safi, N.E.; Ghidouche, S.; Ducrot, P.H. Flavonoids: hemisynthesis, reactivity, characterization and free radical scavenging activity. Molecules. 2007. 12. 2228-2258.

Kaur, G.; Asthir, B. Proline: as key player in plant abiotic stress tolerance. Biol. Plant. 2015. 59 (4). 609-619. https://doi.org/10.1007/s10535-015-0549-3.

Razavizadeh, R.; Ehsanpour, A.A. Effects of salt stress on proline content, expression of delta-1-pyrroline-5-carboxylate synthetase, and activities of catalase and ascorbate peroxidase in transgenic tobacco plants. Biol. Lett. 2009. 46 (2). 63-75. https;//doi.org/10.2478/v10120-009-0002-4

Savouré, A.; Jaouva, S.; Hua, X.J.; Ardiles, W.; Montagu, M.V.; Verbruggen, N. Isolation, characterixation and chromosomal location of a gene encoding delta-1-pyrroline-5-carboxylate synthetase in Arabidopsis thaliana. FEBS Lett. 1995. 372(1). 13-19. https;//doi.org/10.1016/0014-5793(95)00935-3

Nakashima, K.; Satoh, R.; Kiyosue, T.; Yamaguchi-Shinozaki, K.; Shinozaki, K. A gene encoding proline dehydrogenase is not only induced by proline and hypoosmolarity but is also developmentally regulated in the reproductive organs in Arabidopsis Plant Physiol. 1998. 18(4). 1233-1241. https://doi.org/10.1104/pp.118.4.1233

Rong, W.; Qi, L.; Wang, A.Y.; Ye, X.G.; Du, L. Liang, H.X.; Xin, Z.; Zhang, Z. The ERF transcriptional factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotech.J. 2014. 12(4). 468-479. https://doi.org/10.1111.pbi.12153.

Jun-Wei, W.; Feng-Ping, Y.; Xu-Qing, C.; Liang, R.Q.; Zhang, L.Q.; Gens, D.M.; Zhang, X.D.; Song, Y.Z.; Zhang, G.S. Induced expression of DREB transcription factor and study of its physiological effects of drought tolerance in transgenic wheat. Acta Genet. Sin. 2006. 33(5). 468-476. https://doi.org/10.1016/S0379-4172(06)60074-7.

Morran, S.; Eini, O.; Pyvovarenko, T.; Parent, B.; Singh, R.; Ismagul, A.; Eliby, S.; Shirley, N.; Landridge, P.; Lopato, S. Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotech.J. 2011. 9(2). 230-249. https://doi.org/10.1111/j.1467-7652.2010.00547.x

Pellegrineschi, A.; Reynlds, M.; Pacheco, M.; Brito, R.M.; Almeraya, R.; Yamaguchi – Shinozaki, K.; Hoisington, D. Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome. 2004. 47. 493-500. https://doi.org/10.1139/g03-140

Gao, S.; Xu, H.; Chen, G.X. Improvement of wheat drought and salt tolerance by expression of a stress inducible transcription factor GmDREB of soybean (Glycine max). Chinese Sci. Bull. 2005. 50(23). 2714-2723.

Ito, H.; Gaubert, H.; Maruyama, K.; Taji, T.; Kobayshi, M.; Sekio, M.; Shinozali, K.; Jamaguchi – Shinozaki, Т. Functional analysis of rice DREB/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol. 2006. 47(1). 141-153. https://doi.org/10.1093/pcp/pci230

Al-Abed, D.; Madasamy, P.; Talla, R.; Goldman, S.; Rudrabhatla, S. Genetic engineering of maize with the Arabidopsis DREB1A/CBF3 gene using split-seed explants. Crop Sci. 2007. 47. 2390-2402. https://doi.org/10.2135/cropsci2006.11.0712

Zhang, S.; Li, N.; Gao, F.; Yang, A.; Zhang, J. Over-expression of TsCBF1 gene confers improved drought tolerance on transgenic maize. Molecular Breeding. 2010. 26(3). 455-465. https://doi.org/10.1007/s11032-009-9385-5

Xu, M.; Li, L.; Fan, Y.; Wan, J.; Wang, L. Zm CBF3 over expression improves tolerance to abiotic stress in transgenic rice (Oryza sativa) without yield penalty. Plant Cell Rep. 2011. 30(10). 1949-1957. https://doi.org/10.1007/s00299-011-1103-1

Fujita, Y.; Fujita, M.; Shinozaki, K.; Yamaguchi- Shinozaki, K. ABA-mediated transcriptional regulation in response to osmotic stress in plants. J. Plant Res. 2011. 124. 509-525. https://doi.org/10.1007/s10265-011-0412-3

Niu, X.; Helentjaris, T.; Bate, N.J.; Maize AB14 binds coupling element1 in abscisic acid and sugar response genes. Plant Cell. 2002. 14. 2565-2575. https://doi.org/10.1105/tpc.003400

Wei, K.; Chen, J.; Wang, Y.; Chen, Y.; Chen, S.; Lin, Y.; Pan, S.; Zhang, X.; Xie, D. Genome-wide analysis of bZIP-encoding genes in maize. DNA Research. 2012. 19(6). 1-14. https://doi.org/10.1093/dnares/dss026

Chen, H.; Zhou, J.; Chen, H.; Chen, W.; He, H.; Chen, L.; Chen, H.; Deng, X.W. Basic leucine zipper transcription factor OsbZIP16 positively regulates drought resistance in rice. Plant Sci. 2012. 193. 8-17. https://doi.org/10.1016/j.plantsci.2012.05.003

Zheng, X.; Chen, B.; Lu, G.; Han, B. Over expression of a NAC transcription factor enhances rice drought and salt tolerance Biochem. and Biophys. Res. Comm. 2009. 379. 985-989. https://doi.org/10.1016/j.bbrc.2008.12.163

Xue, G.P.; Waya, H.M.; Richardson, T.; Drenth, I.P.A.; Joyce, C.; McIntyre, L. Overexpression of a TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat. Molec. Plant. 2011. 1-16. https://doi.org/10.1093/mp/ssr013

Lu, M.; Ying, D.F.; Zhang, Y.S.; Shi, Y.C.; Song, T.Y.; Wang Y. A maize stress-responsive NAC transcription factor, ZmSNAC1, confers enhanced tolerance to dehydration in transgenic Arabidopsis. Plant Cell Rep. 2012. 31(9). 1701-1711. https://doi.org/10.1007/s00299-012-1284-2

Jin H, Huang F, Cheng H, Yo D. Overexpression of the GmNAC2 gene, a NAC transcription factor reduces abiotic stress tolerance in tobacco. Plant Mol. Biol. Rep. 2012. 31(2); 1 – 6 https://doi.org/10.1007/s11105-012-0514-7

Bahieldin, A.; Mahfiuz, H.T.; Eissa, H.F.; Saleh, O.M.; Ramadan, A.M.; Ahmed, I.; Dyer, W.E.; El-Itriby, H.A.; Madkour, M.A. Field evaluation of transgenic wheat plants stably expressing HVA1 gene for drought tolerance. Phys. Plant. 2005. 123(4). 129-132. https://doi.org/10.1111/j.1399-3054.2005.00470.x

Nguen, T.X.; Stilcken, M. Barley HVA1 gene confers drought and salt tolerance in transgenic Maize (Zea mays L.). Adv. Crop Sci. Tech. 2013. 1. 105 - 121. https://doi.org/10.4172/acst.1000105

Muñoz-Mayor, A.; Pineda, B.; Garcia-Abellan, J.O.; Anton, T.; Garcia – Sogo, B.; Sanchez-Bel, P.; Flores, F.B.; Angosto, T.; Pinton, J.A.; Moreno, V.; Bolarin, M.C. Over expression of dehydrine tas14 gene improves the osmotic stress imposed by drought and salinity in tomato. J. of plant Phys. 2012. 169(5). 459-468. https://doi.org/10.1016/j.jplph.2011.11.018

Kobayashi, F.; Ishibashi, M.; Takumi, S. Transcriptional activation of Cor/Lea genes and increase in abiotic stress tolerance through expression of a wheat DREB2 homolog in transgenic tobacco. Transgenic Res. 2008. 17(5)., 755-767.

Yoshida, T.; Fujita, Y.; Sayama, H.; Kodokoko, S.; Maruyama, K.; Migoi, J.; Shinozaki, K.; Yamaguchi – Shinozaki, K. AREB1, AREB2 and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation Plant J. 2010. 61. 672-685. https://doi.org/10.1111/j.1365-313X.2009.04092.x

Nishida, H.; Suzaki, T. Two negative regulatory systems of root nodule symbiosis – how are symbiotic benefits and costs balanced. Plant Cell Physiol. 2018. 59(9). 1733-1738. https://doi.org/10.1093/pcp/pcy102

Soyano, T.; Hirakawa, H.; Sato, S.; Hayashi, M.; Kawaguchi, M. Nodule inception creates a long-distance negative feedback loop involved in homeostatic regulation of nodule organ production Proc. Natl. Acad. Sci. USA. 2014. 111. 14607-14612. https://doi.org/10.1073/pnas.1412716111

Miyazawa, H.; Oka-Kira, E.; Sato, N.; Nakahashi, H.; Wu, G.J.; Sato, S.; Hayashi, M.; Hayashi, M.; Betsuyaku, S.; Nakazano, M.; Tabata, S.; Harada, K.; Sawa, S.; Fukuda, H.; Kawagachi, M. The receptor-like kinase KLAVIER mediates systemic regulation of nodulation and non-symbiotic shoot development in Lotus japonicas. Development. 2010. 137. 4317-4325. https://doi.org/10.1242/dev.058891.

Okamoto, S.; Shinohara, H.; Mori, T.; Matsubayashi, Y.; Kawaguchi, M. Root-derived CLE glycopeptides control nodulation by direct binding to HAR1 receptor kinase. Nat. Commun. 2013. 4. 2191 - 2233. https://doi.org/10.1038/ncomms3191

Han, D.; Du, M.; Zhou, Z.; Wang, S.; Li, T.; Han, J.; Xu, T.; Yang, G. Overexpression of a Malus baccata NAC Transcription Factor Gene MbNAC25 Increases Cold and Salinity Tolerance in Arabidopsis. Int.J.Mol.Sci. 2020. 21(4). 1-15. https://doi.org/10.3390/ijms21041198

Xinran, D.; Mingxing, S.; Yang, J.; Suxiang, X.; Jieqiong, S.; Hongfei, W.; Qiuli, L. A Transcription Factor SlNAC10 Gene of Suaeda liaotungensis Regulates Proline Synthesis and Enhances Salt and Drought Tolerance. Int. J. Mol. Sci. 2022. 23(9625). 1-18. https://doi.org/10.3390/ijms23179625

Xu, L.; Song, J.Q.; Wang, Y.L.; Liu, X.H.; Li, X.L.; Zhang, B.; Li, A.J.; Ye, X.F.; Wang, J.; Wang, P. Thymol improved salinity tolerance of tobacco by increasing the solium ion efflux and enhancing the content of nitric. BMC Plant Biol. 2022. 22(31). https://doi.org/10.1186/s12870-021-03395-7

Xinran, D.; Mingxing, S.; Yang, J.; Suxiang, X.; Jieqiong, S.; Hongfei, W.; Qiuli, L. A Transcription factor SlNAC10 Gene of Suaeda liaotungensis Regulates Proline Synthesis and Enhances Salt and Drought Tolerance. Int. J. Mol. Sci. 2022. 23(9625). 1-18. https://doi.org/10.3390/ijms23179625

Niron, Y.; Barlas, N.; Salin, B.; Türet, M. Comparative transcriptome, metabolom and ionome analisis of two comprasting common bean genotypes in Saline conolition. Flant. Plant Sci. 2022. 11. https://doi.org/

Zhou, X.; Li, S.; Yabg, X. The DcPs1 cooperates with OsDla during pollen development and 2n gameteproduktion in carnatim meiosis. BMA Plant Biology. 2022. 22. 259 – 271. https://doi.org/10.1186/312870-022-03648-z

Fehu, O. Metabolomics – the link between genotypes and phenotypes. Plant Mol.Biol. 2002. 48. 155 – 171. https://doi.org/10.1023/A:1013713905833

Li, Y.; Sjölander, S.H.; Cuattinogius, S.; Jang, Q.; Fernandejde la Cruz, L.; Mataix – Cols, D.; Brauder, G. Li, J.; Zhng, W.; Fall, K.; Donofiro B.M. Almqvist, C.; Lichtein, P.; Valdimarsdóttiv, V.A.; Lu, D. Association of parental and perinatal factots with subsequent risk of stress – related disordes: a nationwide cohort study with sibling compavison. Molecular Psychiatry. 2022. 27. 1712 – 1719. https://doi.org/10.1038/941380-021-014006-5

Yang, W.; Guo, T.; Luo, J.; Zhang, R.; Zhang, J.; Warburton, M.L.; Xiao, Y.; Yan, J. Target – oriented prioritization: targeted selection stalegy by integration organismal and molecular traits through predictive analistic in breding. Genome Biology. 2022. 23(80). 1 -19. https://doi.org/10.1186/s13059-022-02650-w

Zen, P.; Ge, X.; Li, Z. Transcriotional interactions of singl B-subgenome chromosome with C – subgenome in B.oletacea – nigra additional lines. Plants. 2023. 12. 2029 – 2039. https://doi.org/10.390/plants12102029

Mifsud, J.C.O.; Galagher, R.V.; Holmes, E.C.; Geoghegan, J.L. Transcriptome mining expands knowledge of RNA viruses across the olant kindom. Journal of Virology. 2022. 96(24). 1 – 17. https://doi.org/10.1128/jvi.00260-22

Tyagi, P.; Sing, D.; Mathur, S.; Singh, A.; Ranjan, R. Upcoming progress of transkriptomics studies on plants: an overview. Frontiers in Plant Sci. 2022. 13. 1 – 21. https://doi.org/10.3389/fpls.2022.1030890

Liu, Y.; Lu, S.; Liu, K.; Huang, L.; Guo, L. Proteonics: a powerful to stusy plant responses to biotic stress. Plant Methods. 2019. 15(135). 1 – 20. https://doi.org/10.1186/s13007-019-0515-8

Vuong, U.T.; Iswanto, A.B.B.; Nguen, Q.M.; Kang, H.; Lee, J.; Moon, J.; Hee-Kim, S. Engineering plant immune circuit: wqlking to the brigth future with a novel toolbox. Plant Biotechnol J. 2023. 21(1). 17 – 45. https://doi.org/10.1111/pbi.13916

Kim, L.H.; Castroverde, C.D.M.; Huang, S.; Li, C.; Hillereary, R.; Seroka, R.; Medina – Yerena, D.; Huot, B.; Wang, L.; Nomura, K.; Marr, S.K.; Wildermuth, M.C.; Chen, T.; MacMicking, J.D.; He, S.Y. Increasing the resilience of plant immunity to a warming ckimate. Nature. 2022. 607. 339 – 344. https://doi.org/10.1038/s41586-022-04902-y

Gechev, T.; Petrov, V. Plant systems Biology in 2022 and beyond. Int.J.of Molecular Sci. 2022. 23. 4159 – 4164. https://doi.org/10.3390/ujms23084159

Sarraf, M.; Janeeshma, E; Arif, N.; Farooqi, M.Q.U.; Kumar, V.; Ansari, N.A.; Ghani, M.I.; Ahanger, A.A.; Hasanuzzaman, M. Understanding the role of benefical elements in developing plant stress resilience: signaling ang crosstalk with phytogormones and microbes. Plant Stress. 2023. 10. 100224. https://doi.org/10.1016/j.stress.2023.100224

Mishra, N.; Jiang, C.; Chen, L.; Paul, A.; Cgatterjee, A.; Shen, G. Achieving abiotic stress tolerance in plants through antioxidative defence mechanisms. Frontiers in Plant Sci. 2023. 14. 1110622. https://doi.org/10.3389/fpls.2023.1110622

Yoo, Y.; Yoo, Y.H.; Lee, D.Y.; Jung, K.H.; Lee, S.W.; Park, J.C. Caffeine produced in rise plants provides tolerance to water-deficit stress. J.Antioxidants. 2023. 12(11). 1984. https://doi.org/10.3390/antiox.1211184

Raza, A.; Charangh, S.; Abbas, A.; Hassan, M.U.; Seed, F.; Haider, S.; Sharif, R.; Anand, A.; Corpas, F.J.; Jin, W.; Varshney, K. Assessment of proline functionf in higher plants under extreme temperatures. Plant Biology. 2023. 25(3). 379 – 395. https://doi.org/10.1111/plb.13510.

Anh, T.T.L.; Mai, N.T.N.; Tung, H.T.; Khai, H.D.; Cuong, D.M.; Luan, V.Q.; Phuong, H.T.N.; Bith, N.V.; Vinh, B.V.T.; Thuy, N.T.T.; Thao, N.P.; Nhut, D.T. Effect of spermidine, glutamine, and proline on somatic embriogenesis and silver nanoparticles supplied culture improved rhizome formation of Panax vietnamensis var.langbianensis. South African Journal of Botany. 2023. 163. 226 – 236. https://doi.org/10.1016/j.sajb.2023.10.032

Завантаження

Опубліковано

2024-06-26

Номер

Розділ

Ботаніка