Характеристика та порівняння основних видів автофагії
DOI:
https://doi.org/10.29038/2617-4723-2016-337-12-218-224Ключові слова:
мікроавтофагія, мікронуклеофагія, мікропексофагія, мікромітофагія, шаперон-опосередкована автофагія, макроавтофагіяАнотація
Автофагія забезпечує виживання клітин за несприятливих умов, їх нормальний розвиток і бере участь у підтримці гомеостазу. Тому вичерпна характеристика автофагії потрібна для розуміння механізмів протидії клітини стресовим впливам. Мета цього огляду – узагальнення відомої інформації й висвітлення питань, що потребують подальших досліджень.
Посилання
1. Guanghong J. Autophagy: A housekeeper in cardiorenal metabolic health and disease / J. Guanghong, J. R. Sowersa // Biochim Biophys Acta. – 2015. – 1852(2). – P. 219–224.
2. Parzych K. R. An overview of autophagy: Morphology, mechanism and regulation / K. R. Parzych, D. J. Klionsky // Antioxidants & Redox Signaling – 2013. – P. 1–39.
3. Devenish R. J. Autophagy: Starvation Relieves Transcriptional Repression of ATG / Genes R. J. Devenish, M. Prescott // Current Biology. – 2015. – Vol 25, No 6. – P. 238–240.
4. Liu Y. HMGB1-induced autophagy in Schwann cells promotes neuroblastoma proliferation / Y. Liu, L. Song // Int J Clin Exp Pathol. – 2015. – 8(1). – P. 504–510.
5. Thumm M., Simons M. Myelinophagy: Schwann cells dine in / M. Thumm, M. Simons // JCB. – 2015.– Vol. 210, No 1. – P. 9–10.
6. Autophagy Is Involved in the Reduction of Myelinating Schwann Cell Cytoplasm during Myelin Maturation of the Peripheral Nerve / S. Y. Jang, Y. K. Shin, S. Y. Park et al. // PLOS ONE. – 2015. – P. 1–14.
7. Schwann cell autophagy, myelinophagy, initiates myelin clearance from injured nerves / J. A. Gomez-Sanchez [et al] // J. Cell Biol. – Vol. 210 No. 1. – P. 153–168.
8. Lemasters J. J. Variants ofmitochondrialautophagy: Types1 and 2 mitophagy and micromitophagy (Type3) / J. J. Lemasters // RedoxBiology/ – 2(2014)/ – P. 749–754.
9. Autophagy core machinery : overcoming spatial barriers in neurons / A. R. Ariosa, D. J. Klionsky // J MolMed. – 2016. – P. 1–11.
10. Li W. Microautophagy: lesser-known self-eating / W. Li, J. Lib, J. Bao // Cellular and Molecular Life Sciences. – 2012. – Vol. 69. Is 7. – P. 1125–1136.
11. Mijaljica D. Microautophagy in mammalian cells: Revisiting a 40-year-old conundrum / D. Mijaljica, M. Prescott, R. J. Devenish // Autophagy. – 2011. – 7:7. – P. 673–682.
12. Krick R. Piecemeal microautophagy of the nucleus / R. Krick // Autophagy. – 2009. – 5:2 – P. 270–272.
13. Mijaljica D. A Late Form of Nucleophagy in Saccharomyces cerevisiae / D. Mijaljica, M. Prescott, R. J. Devenish // PLoS ONE – 2012. – Vol. 7. Is.6. – P. 1–16.
14. Shpilka T. Shedding Light on Mammalian Microautophagy / T. Shpilka, Z. Elazar // Developmental Cell. – 2011. – 20. – P. 1–2.
15. Tasset I. Role of chaperone-mediated autophagy in metabolism / I. Tasset, A. M. Cuervo // The FEBS Journal. – 2016. – P. 1–11.
16. Suzuki H. Structural biology of the core autophagy machinery / H. Suzuki, T. Osawa, Y. Fujioka, N. N. Noda // Current Opinion in Structural Biology. – 2016. – 43. – P. 10–17.
17. Tor directly controls the Atg1 kinase complex to regulate autophagy / Y. Kamada, K-I. Yoshino, C. Kondo [et al] // Mol Cell Biol. – 2010. – 30. – P. 1049–1058.
18. Atg17 functions in cooperation with Atg1 and Atg13 in yeast autophagy / Y. Kabeya, Y. Kamada, M. Baba et al. // Mol Biol Cell. – 2005. – 16. – P. 2544–2553.
19. Tor-mediated induction of autophagy via an Apg1 protein kinase complex / Y. Kamada, T. Funakoshi, T. Shintani [et al] // J Cell Biol. – 2000. – 150. – P. 1507–1513.
20. Mouse ULK2, a novel member of the UNC-51-like protein kinases: unique features of functional domains / J. Yan, H. Kuroyanagi, T. Tomemori et al. // Oncogene. – 1999. – 18. – P. 5850–5859.
21. Mercer C. A. A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy / C. A. Mercer, A. Kaliappan., P. Dennis // Autophagy. – 2009. – 5. – P. 649–662.
22. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Hosokawa / T. Hara, T. Kaizuka et al. // Mol Biol Cell. – 2009. – 20. – P. 1981–1991.
23. Distinct classes of phosphatidylinositol 3′-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells / A. Petiot, E. Ogier-Denis, E. F. Blommaart, et al. // J Biol Chem. – 2000. – 275. – P. 992–998.
24. Apg7p/Cvt2p is required for the cytoplasm-to-vacuole targeting, macroautophagy, and peroxisome degradation pathways. / V. M. Dalton, K. P. Eggerton, et al. // Mol Biol Cell. – 1999. – 10. – P. 1337–1351.
25. LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation / Y. Kabeya, N. Mizushima, A. Yamamoto et al. // J Cell Sci. – 2004. – 117. – P. 2805–2812.
26. Atg9 cycles between mitochondria and the pre-autophagosomal structure in yeasts / F. Reggiori, T. Shintani, U. Nair, D. J. Klionsky // Autophagy. – 2005. – 1. – P. 101–109.
27. Self-interaction is critical for Atg9 transport and function at the phagophore assembly site during autophagy / M. Baba, Y. Cao, D. J. Klionsky // Mol Biol Cell. – 2008. – 19. – P. 5506–5516.
28. Atg27 is required for autophagy-dependent cycling of Atg9 / W.-L. Yen, J. E. Legakis, Nair U., D. J. Klionsky // Mol Biol Cell. – 2007. – 18. – P. 581–593.
29. Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes / Hu XW et al // J Cell Sci. – 2006. – 119. – P. 3888–3900.
30. Abeliovich H. Emr S. D. Cytoplasm to vacuole trafficking of aminopeptidase I requires a t-SNARE-Sec1p complex composed of Tlg2p and Vps45p. / H. Abeliovich, T. Darsow, S. D. Emr // EMBO J. – 1999. – 18. – P. 6005–6016.
31. Autophagy: Principles and significance in health and disease / V. Todde, M. Veenhuis, I. J. Klei // Biochimica et Biophysica Acta. – 2009. – 3–13. – P. 1–11.
2. Parzych K. R. An overview of autophagy: Morphology, mechanism and regulation / K. R. Parzych, D. J. Klionsky // Antioxidants & Redox Signaling – 2013. – P. 1–39.
3. Devenish R. J. Autophagy: Starvation Relieves Transcriptional Repression of ATG / Genes R. J. Devenish, M. Prescott // Current Biology. – 2015. – Vol 25, No 6. – P. 238–240.
4. Liu Y. HMGB1-induced autophagy in Schwann cells promotes neuroblastoma proliferation / Y. Liu, L. Song // Int J Clin Exp Pathol. – 2015. – 8(1). – P. 504–510.
5. Thumm M., Simons M. Myelinophagy: Schwann cells dine in / M. Thumm, M. Simons // JCB. – 2015.– Vol. 210, No 1. – P. 9–10.
6. Autophagy Is Involved in the Reduction of Myelinating Schwann Cell Cytoplasm during Myelin Maturation of the Peripheral Nerve / S. Y. Jang, Y. K. Shin, S. Y. Park et al. // PLOS ONE. – 2015. – P. 1–14.
7. Schwann cell autophagy, myelinophagy, initiates myelin clearance from injured nerves / J. A. Gomez-Sanchez [et al] // J. Cell Biol. – Vol. 210 No. 1. – P. 153–168.
8. Lemasters J. J. Variants ofmitochondrialautophagy: Types1 and 2 mitophagy and micromitophagy (Type3) / J. J. Lemasters // RedoxBiology/ – 2(2014)/ – P. 749–754.
9. Autophagy core machinery : overcoming spatial barriers in neurons / A. R. Ariosa, D. J. Klionsky // J MolMed. – 2016. – P. 1–11.
10. Li W. Microautophagy: lesser-known self-eating / W. Li, J. Lib, J. Bao // Cellular and Molecular Life Sciences. – 2012. – Vol. 69. Is 7. – P. 1125–1136.
11. Mijaljica D. Microautophagy in mammalian cells: Revisiting a 40-year-old conundrum / D. Mijaljica, M. Prescott, R. J. Devenish // Autophagy. – 2011. – 7:7. – P. 673–682.
12. Krick R. Piecemeal microautophagy of the nucleus / R. Krick // Autophagy. – 2009. – 5:2 – P. 270–272.
13. Mijaljica D. A Late Form of Nucleophagy in Saccharomyces cerevisiae / D. Mijaljica, M. Prescott, R. J. Devenish // PLoS ONE – 2012. – Vol. 7. Is.6. – P. 1–16.
14. Shpilka T. Shedding Light on Mammalian Microautophagy / T. Shpilka, Z. Elazar // Developmental Cell. – 2011. – 20. – P. 1–2.
15. Tasset I. Role of chaperone-mediated autophagy in metabolism / I. Tasset, A. M. Cuervo // The FEBS Journal. – 2016. – P. 1–11.
16. Suzuki H. Structural biology of the core autophagy machinery / H. Suzuki, T. Osawa, Y. Fujioka, N. N. Noda // Current Opinion in Structural Biology. – 2016. – 43. – P. 10–17.
17. Tor directly controls the Atg1 kinase complex to regulate autophagy / Y. Kamada, K-I. Yoshino, C. Kondo [et al] // Mol Cell Biol. – 2010. – 30. – P. 1049–1058.
18. Atg17 functions in cooperation with Atg1 and Atg13 in yeast autophagy / Y. Kabeya, Y. Kamada, M. Baba et al. // Mol Biol Cell. – 2005. – 16. – P. 2544–2553.
19. Tor-mediated induction of autophagy via an Apg1 protein kinase complex / Y. Kamada, T. Funakoshi, T. Shintani [et al] // J Cell Biol. – 2000. – 150. – P. 1507–1513.
20. Mouse ULK2, a novel member of the UNC-51-like protein kinases: unique features of functional domains / J. Yan, H. Kuroyanagi, T. Tomemori et al. // Oncogene. – 1999. – 18. – P. 5850–5859.
21. Mercer C. A. A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy / C. A. Mercer, A. Kaliappan., P. Dennis // Autophagy. – 2009. – 5. – P. 649–662.
22. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Hosokawa / T. Hara, T. Kaizuka et al. // Mol Biol Cell. – 2009. – 20. – P. 1981–1991.
23. Distinct classes of phosphatidylinositol 3′-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells / A. Petiot, E. Ogier-Denis, E. F. Blommaart, et al. // J Biol Chem. – 2000. – 275. – P. 992–998.
24. Apg7p/Cvt2p is required for the cytoplasm-to-vacuole targeting, macroautophagy, and peroxisome degradation pathways. / V. M. Dalton, K. P. Eggerton, et al. // Mol Biol Cell. – 1999. – 10. – P. 1337–1351.
25. LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation / Y. Kabeya, N. Mizushima, A. Yamamoto et al. // J Cell Sci. – 2004. – 117. – P. 2805–2812.
26. Atg9 cycles between mitochondria and the pre-autophagosomal structure in yeasts / F. Reggiori, T. Shintani, U. Nair, D. J. Klionsky // Autophagy. – 2005. – 1. – P. 101–109.
27. Self-interaction is critical for Atg9 transport and function at the phagophore assembly site during autophagy / M. Baba, Y. Cao, D. J. Klionsky // Mol Biol Cell. – 2008. – 19. – P. 5506–5516.
28. Atg27 is required for autophagy-dependent cycling of Atg9 / W.-L. Yen, J. E. Legakis, Nair U., D. J. Klionsky // Mol Biol Cell. – 2007. – 18. – P. 581–593.
29. Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes / Hu XW et al // J Cell Sci. – 2006. – 119. – P. 3888–3900.
30. Abeliovich H. Emr S. D. Cytoplasm to vacuole trafficking of aminopeptidase I requires a t-SNARE-Sec1p complex composed of Tlg2p and Vps45p. / H. Abeliovich, T. Darsow, S. D. Emr // EMBO J. – 1999. – 18. – P. 6005–6016.
31. Autophagy: Principles and significance in health and disease / V. Todde, M. Veenhuis, I. J. Klei // Biochimica et Biophysica Acta. – 2009. – 3–13. – P. 1–11.
Завантаження
Опубліковано
2016-12-17
Номер
Розділ
Фізіологія людини і тварин
Як цитувати
Характеристика та порівняння основних видів автофагії. (2016). Нотатки сучасної біології, 12(337), 218-224. https://doi.org/10.29038/2617-4723-2016-337-12-218-224