Modern methods for studying qualitative and quantitative parameters of bones

Authors

DOI:

https://doi.org/10.29038/NCBio.24.1-15

Keywords:

bones, electron microscopy, laser polarimetry

Abstract

 

 The article discusses modern methods for studying the qualitative and quantitative parameters of bones, which play a key role in the diagnosis, treatment, and prevention of musculoskeletal diseases. The review article analyzes the results of stereometric analysis of bone microstructure based on scanning electron microscopy. Among qualitative methods, particular attention is paid to morphological and histological studies, which allow assessing the structure and condition of bone tissue at the microscopic level. Quantitative methods include radiography, computed tomography (CT), magnetic resonance imaging (MRI), and densitometry, which provide precise measurements of bone tissue density and volume. Additionally, new technologies such as three-dimensional reconstruction and biomechanical modeling are considered, offering new opportunities for detailed analysis and personalized approaches to each patient. Attention is also given to the development prospects of these methods and their role in modern medicine. Quantitative and qualitative morphological parameters of bone tissue are analyzed based on experimental and clinical material. The laser polarimetry method allows examining the fine morphostructure and its structural features. There is a definite correlation between the morphological parameters of bone tissue and the state of polarization of the objective laser field.

References

Pykaliuk, V. S.; Kutia, S. A.; Verchenko, I. A. Mikroelementy ta kistkova tkanyna. Tavriiskyi medyko-biolohichnyi visnyk, 2008, 11(3, ch. 1). S. 168–173. (in Ukrainian)

Pykaliuk, V. S.; Mostovyi, S. O. Suchasni uiavlennia pro biolohiiu ta funktsiiu kistkovoi tkanyny. Tavriiskyi medyko-biolohichnyi visnyk, 2006. 9(3, ch. 1). S. 186–195. (in Ukrainian)

Pykaliuk, V. S. Metodychni aspekty doslidzhennia skeletu liudyny i tvaryn. Naukovo-metodychne vydannia, Simferopol. 2008. 272 s. (in Ukrainian)

Pykaliuk, V. S. Morfolohichni mozhlyvosti kilkisnoho stereometrychnoho analizu mikrostruktury kistky za rezultatamy rastrovoi elektronnoi mikroskopii. Ukrainskyi morfolohichnyi almanakh, 2011. (3). S. 214–216. (in Ukrainian)

Pykaliuk, V. S. Fraktsiinyi sklad orhanichnoho matryksa, mineralnoho komponenta i mekhaniko-plastychni vlastyvosti kistky. Problemy, dosiahnennia ta perspektyvy. Simferopol, 2007. 146(IV). S. 68–74. (in Ukrainian)

Ushenko, O. H.; Akhtemiichuk, Yu. T.; Antoniuk, O. P.; Balanetska V. O. Lazerna poliarymetriia biolohichnykh tkanyn. Naukovyi visnyk Uzhhorodskoho universytetu. Seriia: Medytsyna. Uzhhorod. Vydavnytstvo UzhNu “Hoverla“, 2010. 38. S. 153–161. (in Ukrainian)

Ushenko, O. H.; Olar, O. I.; Antoniuk, O. P. Lazerna poliarymetriia anizotropnoi skladovoi biolohichnykh tkanyn. Klinichna anatomiia ta operatyvna khirurhiia. 2006. 5(2). S. 98–99. (in Ukrainian)

Ushenko, O. H.; Pavlov, S. V.; Vuitsik, V. T.; Kushneryk, L. Ya., Zabolotna, N. I.; Ushenko, Yu. O.; Dubolazov, O. V.; Anhelska, A. O.; Tomka, Yu. Ya.; Ushenko, V. O. Metody i zasoby poliaryzatsiinoi poliarymetrii biolohichnykh tkanyn. Tom 1: monohrafiia / za redaktsiieiu Oleksandra Ushenka, Serhiia Pavlova, Valdemara Vuitsika. Vinnytsia, 2019. 269 s. (in Ukrainian)

Andronowski, J. M.; Crowder, Ch.; Martinezb, M. S. Recent advancements in the analysis of bone microstructure: New dimensions in forensic anthropology. Forensic Sci Res., 2018. 3(4). P. 278–293.

Bensamoun, S.; Gherbezza, J. M.; de Belleval, J. F.; Ho Ba Tho, M. C. Transmission scanning acoustic imaging of human cortical bone and relation with the microstructure. Clin Biomech (Bristol, Avon)., 2004. 19(6). P. 639–647.

Boyde, A. Scanning electron microscopy of bone. Methods Mol Biol., 2012. 816. P 365–400.

Boyde, A. The Bone Cartilage Interface and Osteoarthritis. Calcif Tissue Int., 2021. 109(3). P. 303–328.

Buenzli, P. R.; Thomas, C. D.; Clement, J. G.; Pivonka, P. Endocortical bone loss in osteoporosis: the role of bone surface availability. Int J Numer Method Biomed Eng., 2013. 29(12). P. 1307–1322.

Delaisse, J. M. The reversal phase of the bone-remodeling cycle: cellular prerequisites for coupling resorption and formation. Bonekey Rep., 2014. 3. P. 561.

Dudchenko, Y. S.; Maksymova, O. S.; Pikaliuk, V. S.; Muravskyi, D. V.; Kyptenko, L. I.; Tkach, G. F. AnalMorphological Characteristics and Correction of Long Tubular Bone Regeneration under Chronic Hyperglycemia Influence. Cell Pathol (Amst)., 2020. 6:2020:5472841.

Eren, E. D.; Nijhuis, W. H.; van der Weel, F.; Eren, A. D.; Ansari, S.; Bomans, P. H. et al. Multiscale characterization of pathological bone tissue. Microsc Res Tech., 2022. 85(2). P. 469–486.

Fermie, J.; de Jager, L.; Foster, H. E.; Veenendaal, T.; de Heus, C.; van Dijk, S. et al. Bimodal endocytic probe for three-dimensional correlative light and electron microscopy. Cell Rep Methods., 2022. 2(5). P. 100220.

Georgiadis, M.; Müller, R.; Schneider, P. Techniques to assess bone ultrastructure organization: orientation and arrangement of mineralized collagen fibrils. J.R. Soc. Interface., 2016. 13:20160088.

Goggin, P.; Ho, E. M.; Gnaegi, H.; Searle, S.; Oreffo, R. O.; Schneidera Ph. Development of protocols for the first serial block-face scanning electron microscopy (SBF SEM) studies of bone tissue. Bone., 2020. 131:115107.

Imagawa, N.; Inoue, K.; Matsumoto, K.; Ochi, A.; Omori, M.; Yamamoto, K. et al. Mechanical, Histological, and Scanning Electron Microscopy Study of the Effect of Mixed-Acid and Heat Treatment on Additive-Manufactured Titanium Plates on Bonding to the Bone Surface. Materials (Basel)., 2020. 13(22). P. 5104.

Jeong, H.; Asai, J.; Ushida, T.; Furukawa, K. S. Assessment of the Inner Surface Microstructure of Decellularized Cortical Bone by a Scanning Electron Microscope. Bioengineering (Basel)., 2019; 6(3). P. 86.

Knothe, Tate M. L.; Adamson, J. R.; Tami, A. E.; Bauer, T. W. The osteocyte. Int. J. Biochem. Cell Biol., 2004. 36. P. 1–8.

Lanyon, L. E.; Sugiyama, T.; Price, J. S. Regulation of Bone Mass: Local Control or Systemic Influence or Both? IBMS BoneKEy, 2009. 6. P. 218–226.

Malo, M. K.; Rohrbach, D.; Isaksson, H.; Töyräs, J.; Jurvelin, J. S.; Tamminen, I. S.; Kröger, H.; Raum, K. Longitudinal elastic properties and porosity of cortical bone tissue vary with age in human proximal femur. Bone., 2013. 53(2). P. 451–458.

McNally, E.A.; Schwarcz, H. P.; Botton, G. A.; Arsenault, A. L. A Model for the Ultrastructure of Bone Based on Electron Microscopy of Ion-Milled Sections. PLoS One., 2012. 7(1). P. e29258.

Micheletti, Ch.; Gomes-Ferreira, P. H.; Casagrande, T.; Lisboa-Filho, P. N.; Okamoto, R.; Grandfield, K. From tissue retrieval to electron tomography: nanoscale characterization of the interface between bone and bioactive glass. JR Soc Interface., 2021. 18(182). 20210181.

Mulcahy, L. E.; Taylor, D.; Lee, T. C.; Duffy, G. P. RANKL and OPG Activity is Regulated by Injury Size in Networks of Osteocyte-like Cells. Bone., 2011. 48(2). P. 182–188.

Palmquist, A.; Grandfield, K.; Norlindh, B.; Mattsson, T.; Brånemark, R.; Thomsen, P. Bone – titanium oxide interface in humans revealed by transmission electron microscopy and electron tomography. JR Soc Interface., 2012. 9(67). P. 396–400.

Peddie, Ch. J.; Genoud, Ch.; Kreshuk, A.; Meechan, K.; Micheva, K. D.; Narayan, K. et al. Volume electron microscopy. Nat Rev Methods Primers., 2022. 2. P. 51.

Sapundani, Rum. Analysis of Osteoporosis by Electron Microscopy Submitted: 16 February 2022 Reviewed: 21 March 2022 Published: 07 May 2022.

Shah, F. A.; Ruscsák, K.; Palmquist, A. 50 years of scanning electron microscopy of bone – a comprehensive overview of the important discoveries made and insights gained into bone material properties in health, disease, and taphonomy. Bone Res., 2019. 7. P. 15.

Shemesh, M.; Addadi, S.; Milstein, Y.; Geiger, B.; Addad, L. Study of Osteoclast Adhesion to Cortical Bone Surfaces: A Correlative Microscopy Approach for Concomitant Imaging of Cellular Dynamics and Surface Modifications. ACS Appl Mater Interfaces. 2016. 8(24). P. 14932–14943.

Tresguerres, F. G.; Torres JLópez-Q.; Hernández, G.; Vega, J. A.; Tresguerres, I. F. The osteocyte: A multifunctional cell within the bone. Ann Anat., 2020. 230. 151510.

Wiatr, A.; Wiatr, M. Impact of Otosclerosis on Auditory Ossicle Remodeling: A Scanning Electron Microscopy Analysis of Stapes Head Overloads. Med Sci Monit., 2023. 29. P. e939679-1–e939679-8.

Published

2024-06-26

Issue

Section

Human and Animal Physiology

How to Cite

Modern methods for studying qualitative and quantitative parameters of bones. (2024). Notes in Current Biology, 7(1), 91-104. https://doi.org/10.29038/NCBio.24.1-15