Study of the character of the accumulation of the distribution of free proline in plant organs under normal and stress conditions
DOI:
https://doi.org/10.29038/NCBio.23.1-1Keywords:
Proline, salinity, water deficit, recovery, Triticum aertivum L., GM plants, T2 generationAbstract
Drastic changes in climatic conditions cause a growing shortage of agricultural plants, and also stimulate the development of Adrobacterium – mediated transformation are actively used to obtain forms of plants with an increased level of resistance to abiotic stresses. As a result of a series of biotechnological manipulations; GM plant Triticum aestivum L. was obtained. 7-day T2 plants of Triticum aestivum L. genotype UK-95/17 were studied and the response to the effects of short-term settlement and water deficit, related to the accumulation of free proline, as well as the nature of seed production under stress were anolized. Accumulation of the protective effect is aimed of the culture. It is know that proline under stressful condition can be for med both as a result of its increased synthesis and as a result of the degradation of proline – containing proteins of the cell membrane. Conducted experiments showed that transgenic plants are characterized by resistance to osmotic stress. At the same time only their parallel study can provide more clear information about their character.
References
Kovbasenko, R.V.; Dmitriev, O.P.; Poliakovky S.O. Osoblyvosti selektsii Roslyn na mekhanizm stiikosti proty posukhy [Peculiarities of plant breeding for drought resistance]. Factory evoliutsii eksperymentalnykh orhanizmiv. 2022, 31, s.55-58. https://doi.org/10.7124/FEEO.v.31.1484
Kirizii, D.A.; Stasik, O.O. Vplyv posukhy i vysokoioloho – biokhimichni protsesy i temperatury na fizioloho – biokhimichni protsesy ta produktyvnict roslyn [Influence of drought and high temperatures on physiological and biochemical processes and plant productivity]. Fiziologiya roslyn i genetyka. 2022, 54(2), s.95-122. https://doi.org/10.15407/frg2022.02/095-122
Mykhalska, S.I.; Komisarenko, A.H.; Aktualni napriamky suchasnykh biotekhnolohii pshenytsi [Current trends in modern wheat biotecnology]. Fiziologiya roslyn i genetyka. 2022, 54(3), с.187-213. https://doi.org/frg2022.04/279
Gahlaut, V.; Gautam, T.; Wani, S.H. Abiotic stress toleramce in wheat (Triticum aestivum L.): molecular breeding perspectives. QTL mapping in crop improvement. Preiiu hena ornityn iesent progress and future perspectives. 2023, p.101-117. https://doi.org/10.1016/B978-0-85243-2.00001
Dubrovna, O.V.; Pryadkina, G.O.; Mykhalska, S.I.; Komisarenko, A.H. Fizioloho – biokhimichni kharacteristyky Roslyn ozymoyi pshenytsi z nadekspresiey hena ornityn – Δ – аminotransferazy [Physiologycal and biochemical characteristics of transgenic winter wheat plants expressing the ornitine - Δ – аminotransferasc gene]. Fiziologiya roslyn i genetyka. 2023, 55(1), s.58-73. https://doi.org/frg2020.01.058
Aadel, A.; Udupa, S.; Abdelwaka, R.; Gaboun, F.; Diria, G.; Douira, A.; Iraqi, D. Agrobacterium – mediated genetic transformation of bread wheat (Triticum aestivum L.) using immature embrios. - Romanian agricultural research J. 2021, 38, pp.1-10. https://doi.org/2067-5720RAR2021-22
Mykhalska, S.I.; Komisarenko, A.H.; Kurchii, V.M.; Tischenko, O.M. Henetychna transformatsiia in planta pshenitsi ozymoi (Triticum aestivum L.) [Genetic transformation in planta winter wheat Triticum aestivum L.)]. Factory evoliutsii eksperymentalnykh orhanizmiv. 2018, 22, s.293-298.
Andryushchenko, V.K.; Sayanova, V.V.; Zhuchenko, A.A. et al. Modyfykatsyia metoda optedelenyia prolyna dlia viyavleniya zasukhoustoichyvikh form roda Lycopersicon Tourn. [Modification of proline determination method for identification of drought – tolerant forms of the genus Lycopersicon Tourn.]. Izv.AN Moldavskoy SSR. 1981, №4, s.55-60.
Kaur, D.; Grewal, S.K.; Kaur, J.; Singh, S. Differential proline metabolism in vegetative and reproductive tissues determine drought tolerance in chickpea. Biol. Plant. 2017, 61(2), р.359 - 366. https://doi.org/10.1007/s10535-016-0695-2
Gujjar, R.S., Pathak, A.D.; Karkute, S.G., Supaibulwatana, K. Multofunctional proline rich proteins and their role in regulating alular proline content in plants under stress. Biologica plantarum. 2019, 63, p. 448-454 https://doi.org/10.32615/bp.2019.078
Chum, S.C.; Paramasivan, M.; Chandrasekaran, M. Prorbusline accumulation influenced by osmotic stress in arbuscular Mycorrhzalsymbiotic plants. Front.Microbiology. 2018, 9(2525), pp.1-13. https://doi.org/10.2289/fmicb.2018.0255
Mykhalska, S.I.; Komisarenko, A.H.; Kurchii, V.M. Heny metabolizmu prolinu v biotekhnologii pidvyshchennya osmostiykosty pshenytsi [Genes of proline metabolis in the biotechnology of wheat osmoticity improvement]. Factory evoliutsii eksperymentalnykh orhanizmiv. 2021, 28, c. 94 - 99. https://doi.org/10.7124/FEEO.v28.1382
Zhang, X.; Gong X.; Li, D.; Yue, H.; Qin, Y.; Liu, Z.; Li, M.; Ma, F. Genome – wide identification of genes in apple genome and the role of MdPRP6 in response to heat stress. Int. J. Mol. Sci. 2022, 5942, p.1-17 https://doi.org/10.3390/ijms22115942
Szabados, L.; Savoure, A. Proline: a multifunctional amino acid. Trends Plant Sci. 2010, 15, p.89-97. https://doi.org/10.1016/j.tplants.2009.11.009
Delauney, A.J.; Verma, D.P. Proline biosynthesis and osmoregulation in plants. Plant Journal. 1993, 4, p.215-223.
Kavi Kishor, P.B.; Sangam, S.; Amrutha, R.N. et al. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implication in plant growth and abiotic stress tolerance. Curr. Sci. 2005, 88, p.424-428.
Patnaik, D.; Vishnudasan, D.; Khurana, P. Agrobacterium-mediated transformation of mature embryos of Triticum aestivum and Triticum durum. - Current Science Association. 2006, 91(3), рр. 307 – 317.
Rajasheker, G.; Nagaraju, M.; Varghese, R.P.; Jalaja, N.; Somanaboina, A.K.; Singam, P.; Sreenivasulu, N.; Kavi Kishor, P.B. Identification and analisis of prolin –rich proteins and hybrid family genes from Sorghum bicolor and their expression. Front. Plant Sci. 2022, 13(952732), p.1-19. https://doi.org/10.3389/fpls.2022.952732
Alvarez, M.E.; Savouré, A.; Szabados, L. Proline metabolism as regulatory hub. Trends in Plant Science. 2022, 27(1), р.39-55. https://doi.org/10.1016/j.tplants.2021.07.009
Ahmed, M.; Hassan, ul F.; Qadir, G.; Shaheed, F.A. Aslam, M.A. Response of proline accumulation in bread whed (Triticum aestivum L.) under rainfed condition. Journal of Agricultural Meteorology. 2017, р.1-9. https://doi.org/10.2480/agrmet.D-14-00047
Rady, M.M.; Mohamed, G.F. Improving salt tolerancre in Triticum aestivum L. plants irrigated with saline water by exogenously applied proline or potassium. Advances in Plants and Agriculture Research. 2018, 8(2), рр.193-199. https://doi.org/1015406/apar.2018.08.00312
Qayyum, A.; Razzaq, A.; Bibi, Y.; Khan, S.U.; Abbasi, K.S.; Sher, A.; Mehmood, A.; Ahmed, W.; Mahmood, I.; Manaf, A.; Khan, A.; Farid, A.; Janks, M.A. Water stress effects on biochemical traits and antiozidant activies of wheat (Triticum aestivum L.) under in vitro conditions. Acta Agriculturae Scandinavica. Soil and Plant Science. 2018, 68(4), р. 283 – 290. https://doi.org/10.1080/09064710.2017.1395064
Kanval, M.; Gogoi, N.; Jones, B.; Bariana, H.; Bansal, U.; Ahmad, N. Pollen: a potential explant for genetic transformation in wheat (Triticum aestivum L.). Agronomy. 2022, 12(2009), p.1-14. https://doi.org/10.3390/agronomy12092009
Hayta, S.; Smedley, M.A.; Clarhe, M.; Forner, M.; Harwood, W.A. An efficient Agrobacterium – mediated transformation protocol for hexaploid and tetraploid wheat. – Curr.Protocols. 2021, 58(1), pp.1-16 https://doi.org/10.1002/cpz1.58
Brandt, K.M.; Gunn, H.; Moretti, N.; Zemetra, R.S. A streamlimed protocol for wheat (Triticum aestivum L.) protoplast isolstion and transformation with CRISPR-Cas ribonucleprotein complexes. Front. Plant Sci. 2020, 11(769), pp.1-14.
Patel, P.; Patil, T.; Maiti, S.; Paul, D.; Amaresa, N. Serecning of osmotic stress – tolerance bacteria for plant growth promoting in wheat (Triticum aestivum L.) and Grinjan (Solanum melongema L.) under drought condition. – Letters in applied microbiology. 2022, 75(15), pp.1286 – 1292 https://doi.org/10.1111/lam.13797
Supartata, P.; Shimizu, T.; Nogawa, N.; Shiori, H.; Nakazima, T.; Haramoto, N.; Nozue, M.; Kojima, M. Development of simple and effient in planta transformation method for wheat (Triticum aestivum L.) using Agrobacterium tumefacies. J. Bios. Bioeng. 2006, 102(13), pp.162-170.
Dubrovna, O.V.; Morgum, B.V. Suchasnyi stan doslidzen Agrobacterium – oposeredkovanoi transformatsii pshenytsi [Current state of research on Agrobacterium – mmediated transformation of wheat]. Fiziologiya roslyn i genetyka. 2018, 50(1), s.187 – 216. https://doi.org/10.15407/frg2018.03.187
Hwang, H.H.; Yu M.; Lai E.M. Agrobacterium – mediated plant transformation: biology and application. American Societyof Plant Biologist. 2017, 20, p.1-30.
Wani, S.H.; Tripathi, P.; Zaid, A.; Challa, G.S.; Kumar, A.; Kumar, V.; Upadhogay, J.; Joshi, R.; Bhatt, M. Transcriptonal regulatiob of osmotic stress tolerance in wheat (Triticum aestivum L.). Plant Mol. Biol. 2018, 97(6), pp. 469-487. https://doi.org/10.1007/s11103-018-0761-6
Hayta, S.; Smedley, M.A.; Demir, S.U.; Blundell, R.; Hinchliffe, A.; Atkinson, N.; Harwood, W.A. An efficient and reproducible huthod for hexaploid wheat (Triticum aestivum L.). Plant method. 2019, 15(121), pp.1-15.
Kiryushkin, A.S.; Ilina, E.L.; Guseva, E.D.; Pawlowski, K.; Demchenko, K.N. Hairy CRIPR: genome editing in plants using hairy root transformation. Plants. 2022, 11(51), pp.1-39. https://doi.org/103390/plants11010051
Zhang, X.; Gong, X.; Yu, H.; Su, X.; Chen, S.; Huang, J.; Lei, Z.; Li, M.; Ma, F. The prolin – rich MdPRP6 confers toleramce to salt stress in transgenic apple (Malus domestica). Scienta Hortianturae. 2023, V.308, 27, pp.1-19. https://doi.org/10/1017/j.scienta.2022.111581
Duarte – Delgado, D.; Daolshani, S.; Schoof, H.; Oyiga, B.C.; Schneuder, M.; Mathew, B.; Leon, J.; Ballora, A. Transcriptome profiling at osmotic and ionic phases of salt stress response in bread wheat uncovers trait – specific candidate gene. BMC Plant Biology. 2020, 20(428), p.1-18. https://doi.org/10.1186/s12870-020-02616-9
Zhong, Y.; Ma, H.; Zhou, T.; Zhu, Z.; Zhong, Y.; Wang, C. ThASR3 confers salt and osmotic stress tolerance in transgenic Tamarix and Arabidopsis. – BMC Plant Biology. 2022, 22(586), pp.1-13. https://doi.org/10.1186/s12870-022-03942-w
Published
Versions
- 2023-10-04 (2)
- 2023-06-30 (1)
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.