Changes in P3 during neurofeedback training in the elderly
DOI:
https://doi.org/10.29038/2617-4723-2020-1-389-103-107Keywords:
neuroreversible training, old age, women, cognitive functions, P300Abstract
Old age involves significant physiological and mental changes. Of particular importance in the aging process are changes in higher nervous activity, accompanied by a violation of higher mental functions of varying severity and a reduced level of resistance to stress.
There are various attempts to improve cognitive function in the elderly. One of the promising areas in the field of psychological correction is training using neurofeedback.
The cognitive evoked potentials are objective indicators of the state of cognitive functions and can be used to study their disorders. The component of cognitive evoked potentials is a positive wave. The parameters that characterize it are the latency P3 (ms) and the amplitude N2-P3 (μV). It is believed that this component is most closely related to the cognitive processes of perception, attention, memory. The aim of our study was to identify changes in the cognitive evoked potentials before and after the application of neurofeedback training.
The study involved 32 elderly women, of whom two groups of 16 persons were formed – "experimental" and "placebo". The experimental group participated in 15 sessions of the neurofeedback training. Representatives of the placebo group believed that they participated in the training,instead, this was a sham neurofeedback training procedure.
The study found a significant reduction in P3 latency after the next step of neurofeedback training. In addition, the neurofeedback training displays the values of the values of the peak interval in the experimental group. No statistically significant differences in R300 latency were found in the placebo groups surveyed.
References
2. Braver, T. S.; West, R. Working memory, executive control, and aging. W: F.I.M. Craik, T.A. Salthause (red.). The Handbook of Aging and Cognition; 2008, 3, рр 311–372.
3. Polich, J.; Ladish, Ch.; Bloom, F. E. Оценка РЗОО при начальной форме болезни Альцгеймера. EEG and clin. Neurophys; 1990, 77, pр 179–189.
4. Polich, J.; Kok, A. Cognitive and biological determinants of P300: an integrative review. BiolPsychol; 1995, 41, рр 103–146.
5. Anguera, J.; Boccanfuso, J.; Rintoul, L. Video game training enhances cognitive control in older adults. Nature; 2013, 501, рр 97–101.
6. Machado, L.; Devine, A.; Wyatt, N. Distractibility with advancing age and Parkinson’s disease. Neuropsychologia; 2009, 47(7), рр 1756–1764.
7. Goh, J. O.; An, Y.; Resnick, S. M. Differential trajec¬tories of age-related changes in components of executive and memory processes. Psychology and Aging; 2012, 27(3), р 707.
8. Treder, N.; Jodzio, K. Heterogeniczność funkcjonowania poznawczego i jego zaburzeń u osób starszych. Psychiatria i Psychoterapia; 2013, 9 (1), рр 3–13.
9. Hardt, J. V.; Kamiya, J. Anxiety change through electroencephalographic alpha feedback seen only in high anxiety subjects. Science; 1978, 7, 201(4350), рр 79–81.
10. Vysochin, Ju. V.; Denisenko, Ju. P. Povyshenie funkcional'nyh vozmozhnostej organizma s pomoshh'ju biologicheskoj obratnoj svjazi [Increasing the functional capabilities of the body using biofeedback]. Fiziol. cheloveka; 2005. T. 31. № 3. р 93.
11. Bahar-Fuchs, A.; Clare, L.; Woods, B. Cognitive training and cognitive rehabilitation for persons with mild to moderate dementia of the Alzheimer’s or vascular type. Alzheimer Research & Therapy; 2013, 5, р 35.
12. Tang, I.; Posner, M. Attention training and attention state training. Trends in cognitive science; 2009, 13, 5, рр 222–227.
13. Wang, M.; Chang, Ch.; Su, S. What’s Cooking? – Cognitive Training of Executive Function in the Elderly. Front Psychol; 2011, 2, р 228.
14. Lecomte, G.; Juhel, J. The Effects of Neurofeedback Training on Memory Performance in Elderly Subjects. Psychology; 2011, 2, 8, рр. 846-852.
15. Hardt, J. V.; Kamiya, J. Anxiety change through electroencephalographic alpha feedback seen only in high anxiety subjects. Science; 1978, 7, 201(4350), рр 79–81.
16. Rebok, G. W.; Ball, K.; Guey, L. T. et al. Ten-year effects of the ACTIVE cognitive training trial on cognition and everyday functioning in older adults. Journal of the American Geriatrics Society; 2014, 62, рр 16–24.
17. Homskaja, E. D. Sistemnye izmenenija biojelektricheskoj aktivnosti mozga kak nejrofiziologicheskaja osnova psihicheskih processov [Systemic changes in the bioelectrical activity of the brain as a neurophysiological basis of mental processes]. Estestvenno nauchnye osnovy psihologii / Pod. red. Smirnova, A. A.; Lurija, A. R.; Nebylicyna, V. D. Pedagogika: Moskva, 1978; ss 234–253.
18. Gates, N.; Sachdev, P.; Fiatarone Singh, M.; Valenzuela, M. Cognitive and memory training in adults at risk of dementia: A Systematic Review. BMC Geriatrics; 2011, 11:55 http://www.biomedcentral.com /1471-2318/11/55.
19. Angelakis, E.; Stathopoulou S.; Frymiare, J. L. et al. EEG neurofeedback: A brief overview and an example of peak alpha frequency training for cognitive enhancement in the elderly. The Clinical Neuropsychologist; 2007, 2, рр 110-129.
20. Gnezdickij, V. V. Obratnaja zadacha JeJeG i klinicheskaja jelektrojencefalografija [EEG inverse problem and clinical electroencephalography]. Izd-vo Taganrogskogo gosudarstvennogo radiotehni-cheskogo universiteta: Taganrog, 2000; s 636.
21. Polich, J. P300 in clinical applications: meaning, method, and measurement Electroencephalography: basic principles, clinical applications, and related fields 3rd ed. Eds. E. Niedermeyer, F. Lopes da Silva. Baltimore: William & Wilkins; 1993, рр 35–60.
22. Polich, J. P300 from a passive auditory paradigm. EEG Clin Neurophysiol; 1989, 74, рр 312–320.
23. Gnezdickij, V.V. Vyzvannye potencialy mozga v klinicheskoj praktike [Evoked Brain Potentials in Clinical Practice]. Izd-vo Taganrogskogo gosudarstvennogo radiotehniches-kogo universiteta: Taganrog, 1997; s 102–104.
24. Gnezdickij, V.V. Vyzvannye potencialy mozga v klinicheskoj praktike [Evoked Brain Potentials in Clinical Practice]. Izd-vo Taganrogskogo gosudarstvennogo radiotehniches-kogo universiteta: Taganrog, 1997; s 110–116.
25. Вranjuk, S. V. Vpliv nejrofіdbek trenіngu na vikonavchі funkcії u osіb pohilogo vіku [Influence of the NeurofeedbackTraining on Executive Functions in the Elderly] Naukovij vіsnik Shіdnoєvropejs'kogo nacіonal'nogo unіversitetu іmenі Lesі Ukraїnki. Serіja: Bіologіchnі nauki; 2018, 8, (381), s 98.
26. Shestakova, A. N.; Service, E.; Gorin, A. A.; Krugliakova, E. S. Cortical responses of 7–10-year-old children to easy and difficult contrasts in discrimination of pseudowords. Psychology. Journal of the Higher School of Economics; 2015, Vol. 12, N 4, рр 64–80.
27. Comerchero, M. D., Polich, J. P3a and P3b from typical auditory and visual stimuli. Clinical neurophysiology, 1999, 110(1), рр 24–30.
28. Avery, D. H.; Avery, D. H.; Kizer, D.; Bolte, M. A. Bright light therapy of subsyndromal seasonal affective disorder in the workplace: morning vs. afternoon exposure. Acta Psychiatr. Scand; 2001, V. 103 (4), рр 267–274.
29. Fjell, A.M.; Walhovd K.B. P300 and Neuropsychological Tests as Measures of Aging: Scalp Topography and Cognitive Changes. Brain Topogr; 2001, Vol. 14. № 1, рр 25–40.
30. Mullіs, R.J.; Holcomb, P.J.; Diner, B.C.; Dykman, R.A. The effects of aging on the p3 component of the visual event-related potential: Electroencephalography and clinical Neurophvsiologv; 1985, 62, рр 141–149.
31. Polich, J.; and Kok, A. Cognitive and biological determinants of P300: an integrative review. Biol. Psychol; 1995, 41, рр 103–146.
32. Lubitz, A. F.; Niedeggen, M.; Feser, M. Aging and working memory performance: electrophysiological correlates of high and low performing elderly. Neuropsychologia; 2017, 106, 42–51.
33. Reuter, E. M.; Voelcker-Rehage, C.; Vieluf, S.; Winneke, A.; Godde, B. A parietal-to-frontal shift in the P300 is associated with compensation of tactile discrimination deficits in late middle-aged adults. Psychophysiology; 2013, 50, рр 583–593.
34. Chen, Y. N.; Mitra, S.; Schlaghecken, F. Sub-processes of working memory in the N-back task: an investigation using ERPs. Clin. Neurophysiol; 2008, 119, рр 1546–1559.
35. Wang, S.; Zhao, Y.; Chen, S.; Lin, G.; Sun, P.; Wang T. EEG biofeedback improves attentional bias in high trait anxiety individuals. BMC Neuroscience; 2013, Doi: 10.1186/1471-2202-14-115.