Characteristic Traits and Comparative Studies of Main Types of Autophagy

Authors

  • Yuliia Turchyna Educational and Scientific Center "Institute of Biology" of Taras Shevchenko National University of Kyiv

DOI:

https://doi.org/10.29038/2617-4723-2016-337-12-218-224

Keywords:

microautophagy, micronucleophagy, micromitophagy, chaperone-mediated autophagy, macroautophagy

Abstract

During the process known as autophagy the cell degrades its own structures. Autophagic mechanisms play an important role in the cell`s life, maintaining the homeostasis within the cell. Autophagy not only provides an opportunity for the cell to survive (autophagic processes are induced as a response to various adverse factors – pathogen invasion or starvation), but is also needed for cell differentiation. Besides from that, there are some evidences that autophagy is carried out by the specific cell proteins not only temporary, awaken by specific cell needs, but constantly (at the specific basal level). Depending on the ways of cargo trafficking towards the lysosomes (in mammalian cells) or vacuoles (in the yeast cells) three main pathways of autophagy are distinguished: macroautophagy, chaperone-meadiated autophagy and microautophagy. Accurate and consecutive characterization of this process is necessary for understanding the mechanisms by which cell live through unfavorable conditions. Nevertheless presently studies concerning autophagy are rather fragmentary. And this review makes an attempt to summarize present knowledge of intracellular self-digestion mechanisms and to ground on this basis the most important directions for further studies.

References

1. Guanghong J. Autophagy: A housekeeper in cardiorenal metabolic health and disease / J. Guanghong, J. R. Sowersa // Biochim Biophys Acta. – 2015. – 1852(2). – P. 219–224.
2. Parzych K. R. An overview of autophagy: Morphology, mechanism and regulation / K. R. Parzych, D. J. Klionsky // Antioxidants & Redox Signaling – 2013. – P. 1–39.
3. Devenish R. J. Autophagy: Starvation Relieves Transcriptional Repression of ATG / Genes R. J. Devenish, M. Prescott // Current Biology. – 2015. – Vol 25, No 6. – P. 238–240.
4. Liu Y. HMGB1-induced autophagy in Schwann cells promotes neuroblastoma proliferation / Y. Liu, L. Song // Int J Clin Exp Pathol. – 2015. – 8(1). – P. 504–510.
5. Thumm M., Simons M. Myelinophagy: Schwann cells dine in / M. Thumm, M. Simons // JCB. – 2015.– Vol. 210, No 1. – P. 9–10.
6. Autophagy Is Involved in the Reduction of Myelinating Schwann Cell Cytoplasm during Myelin Maturation of the Peripheral Nerve / S. Y. Jang, Y. K. Shin, S. Y. Park et al. // PLOS ONE. – 2015. – P. 1–14.
7. Schwann cell autophagy, myelinophagy, initiates myelin clearance from injured nerves / J. A. Gomez-Sanchez [et al] // J. Cell Biol. – Vol. 210 No. 1. – P. 153–168.
8. Lemasters J. J. Variants ofmitochondrialautophagy: Types1 and 2 mitophagy and micromitophagy (Type3) / J. J. Lemasters // RedoxBiology/ – 2(2014)/ – P. 749–754.
9. Autophagy core machinery : overcoming spatial barriers in neurons / A. R. Ariosa, D. J. Klionsky // J MolMed. – 2016. – P. 1–11.
10. Li W. Microautophagy: lesser-known self-eating / W. Li, J. Lib, J. Bao // Cellular and Molecular Life Sciences. – 2012. – Vol. 69. Is 7. – P. 1125–1136.
11. Mijaljica D. Microautophagy in mammalian cells: Revisiting a 40-year-old conundrum / D. Mijaljica, M. Prescott, R. J. Devenish // Autophagy. – 2011. – 7:7. – P. 673–682.
12. Krick R. Piecemeal microautophagy of the nucleus / R. Krick // Autophagy. – 2009. – 5:2 – P. 270–272.
13. Mijaljica D. A Late Form of Nucleophagy in Saccharomyces cerevisiae / D. Mijaljica, M. Prescott, R. J. Devenish // PLoS ONE – 2012. – Vol. 7. Is.6. – P. 1–16.
14. Shpilka T. Shedding Light on Mammalian Microautophagy / T. Shpilka, Z. Elazar // Developmental Cell. – 2011. – 20. – P. 1–2.
15. Tasset I. Role of chaperone-mediated autophagy in metabolism / I. Tasset, A. M. Cuervo // The FEBS Journal. – 2016. – P. 1–11.
16. Suzuki H. Structural biology of the core autophagy machinery / H. Suzuki, T. Osawa, Y. Fujioka, N. N. Noda // Current Opinion in Structural Biology. – 2016. – 43. – P. 10–17.
17. Tor directly controls the Atg1 kinase complex to regulate autophagy / Y. Kamada, K-I. Yoshino, C. Kondo [et al] // Mol Cell Biol. – 2010. – 30. – P. 1049–1058.
18. Atg17 functions in cooperation with Atg1 and Atg13 in yeast autophagy / Y. Kabeya, Y. Kamada, M. Baba et al. // Mol Biol Cell. – 2005. – 16. – P. 2544–2553.
19. Tor-mediated induction of autophagy via an Apg1 protein kinase complex / Y. Kamada, T. Funakoshi, T. Shintani [et al] // J Cell Biol. – 2000. – 150. – P. 1507–1513.
20. Mouse ULK2, a novel member of the UNC-51-like protein kinases: unique features of functional domains / J. Yan, H. Kuroyanagi, T. Tomemori et al. // Oncogene. – 1999. – 18. – P. 5850–5859.
21. Mercer C. A. A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy / C. A. Mercer, A. Kaliappan., P. Dennis // Autophagy. – 2009. – 5. – P. 649–662.
22. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Hosokawa / T. Hara, T. Kaizuka et al. // Mol Biol Cell. – 2009. – 20. – P. 1981–1991.
23. Distinct classes of phosphatidylinositol 3′-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells / A. Petiot, E. Ogier-Denis, E. F. Blommaart, et al. // J Biol Chem. – 2000. – 275. – P. 992–998.
24. Apg7p/Cvt2p is required for the cytoplasm-to-vacuole targeting, macroautophagy, and peroxisome degradation pathways. / V. M. Dalton, K. P. Eggerton, et al. // Mol Biol Cell. – 1999. – 10. – P. 1337–1351.
25. LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation / Y. Kabeya, N. Mizushima, A. Yamamoto et al. // J Cell Sci. – 2004. – 117. – P. 2805–2812.
26. Atg9 cycles between mitochondria and the pre-autophagosomal structure in yeasts / F. Reggiori, T. Shintani, U. Nair, D. J. Klionsky // Autophagy. – 2005. – 1. – P. 101–109.
27. Self-interaction is critical for Atg9 transport and function at the phagophore assembly site during autophagy / M. Baba, Y. Cao, D. J. Klionsky // Mol Biol Cell. – 2008. – 19. – P. 5506–5516.
28. Atg27 is required for autophagy-dependent cycling of Atg9 / W.-L. Yen, J. E. Legakis, Nair U., D. J. Klionsky // Mol Biol Cell. – 2007. – 18. – P. 581–593.
29. Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes / Hu XW et al // J Cell Sci. – 2006. – 119. – P. 3888–3900.
30. Abeliovich H. Emr S. D. Cytoplasm to vacuole trafficking of aminopeptidase I requires a t-SNARE-Sec1p complex composed of Tlg2p and Vps45p. / H. Abeliovich, T. Darsow, S. D. Emr // EMBO J. – 1999. – 18. – P. 6005–6016.
31. Autophagy: Principles and significance in health and disease / V. Todde, M. Veenhuis, I. J. Klei // Biochimica et Biophysica Acta. – 2009. – 3–13. – P. 1–11.

Published

2016-12-17

How to Cite

Characteristic Traits and Comparative Studies of Main Types of Autophagy. (2016). Notes in Current Biology, 12(337), 218-224. https://doi.org/10.29038/2617-4723-2016-337-12-218-224