Barium and cadmium heavy metal ions – reactions of plants and cell cultures

Authors

  • Irina Zaitseva Oles Honchar Dnipro National University
  • Larisa Bronnikova Institute of Plant Physiology and Genetics, Natl. Acad. Sci. of Ukraine

DOI:

https://doi.org/10.29038/NCBio.23.1-2

Keywords:

Ва2 and Cd2 cations, salinity, water stress, tolerance, cell selection

Abstract

Plant growth and development are the results of genotype/environment interaction and are realized under genetic control. The genetic potential realization completeness essentially depends on surroundings. Biotic and abiotic stresses inhibit the ontogenesis. The reaction on various stresses determines the difference between sensitive and tolerant genotypes. In the first case pathological changes develop in organism. The adaptive processes prevail in the second one. During the division the reactions of entire plant and reactions of cellular level are observed. Organism reactions are directed towards the separation of stress agent from active metabolism zone. They are outward displacement, accumulation in special organs. Cell reactions are cooperated with adaptive metabolism changes. Parallel investigation of both events is needs to estimate the part of each variant in total organism tolerance. In such case the comparative analysis of plant and cell culture obtained from the plant is the most optimal approach. To have the true information it is necessary to estimate some parameters. First point is the detection of agent with all-round stress pressure. Another one is the determination of common reactions of adaptation to such stressor. Heavy metal ions (HMI) satisfy the requirements, especially barium, Ва2+and cadmium, Cd2+cations, HMI – are the most dangerous toxicants because they can product vast pathological alterations in different tissues of plant organism. But usually HMI act together with abiotic stresses and their joint action is more hazardous. Cd2+and Ba2+cations toxic pressure is similar to osmotic stresses. There was shown that Ba2+ interrupted the K+ intercellular transport and its outward transportation. Ba2+ ions affect the Na+ transport too. Salinity has the similar effect. Cd2+ ions injure the water status of the organism. Cd2+ negative force due to their influence on LEA. Stress pressure of both cations develop on cellular level. So it is possible to use these cations in cell selection. Cell selection is a biotechnology that gives the opportunity to manipulation with cell populations. This method is connected with various selective systems elaboration to obtain variants with genetic changes in the massive of wild type cells. The type and the dose of stressor give the opportunity of the direction. The similarity of various agents stress pressure may be the approach for selection variants with combined tolerance. Ва2+and Cd2+ions demonstrate the similarity to osmotic stresses – salinity and water deficit.  The selection of forms with higher tolerance levels to those stresses will be the result.  Stress tolerance – is one of the fundamental plant features. The osmotic stress tolerance is polygenic feature. The analysis of variants with combined tolerance may open direct and cross links in the metabolism chains. This information extends genetic, biochemical, physiological aspects of tolerance.

References

Averin, N.H.; Shcherbacov, R.A.; Nedved, E.L.; Mynkov, I.N. Vlyianie nytropyna na povyshenye soleustoichyvosty rastenyi yachmenia (Hordeum vulgare L.). [Effect of nitropin on increasing salt tolerance of barley plants]. Vesty Nacyonalna academy navuk Belarusy. Ser. Biyalogichnyh navuk. 2017, 2. с.33–39.

Kuzemskyi, A.V. Henetycheskye istocnyky povesheniya kachestva plodov tomata [Genetic sources of tomato fruit quality improvement]. Fiziologiya I biohimiya kulturnyh rasteniy. 2006, 38, 3, с.266–273.

Miranda, D. Salinity effects on proline accumulation and total antioxidant activity in leaves of the cape gooseberry (Physalis peruviana L.). Journal of Applied Botany and Food Quality. 2014, 87, рр. 67 –73. https://doi.org/10.5073/JABFQ.2014.087.010

Nies, D.H. Microbial heavy-metal resistance. Applied Microbiology and Biotechnology. 1999, 51, рр.730-750. https://doi.org/10.1007/s002530051457

Venkatachalam, P.; Srivastava, A.K.; Raghothava, K.G.; Sahi, S.V. Genes induced in response to mercury-ion-exposure in heavy metal hyperaccumulator Sesbania drummondii. Enviromental Science and Technology. 2009, 43, рр.843-850. https://doi.org/10.1021/es801304n

Jahangir, M.; Abdel-Farid, I.B.; Choi, Y.H.; Verpoorte, R. Metal ion-inducing accumulation in Brassica rapa. J. Plant Physiology. 2008, 165, рр. 1429–1437.

Surosz, W.; Palinska, K.A. Ultrastructural changes induced by selected cadmium and copper concentrations in the cyanobacterium Phormidium: interaction with salinity. Journal of Plant Physiology. 2000, 187, рр. 643–650.

Pavlokin, J.; Luxov´la, M.; Mistrikova, I.; Mistrik, I. Short- and long-term effects of cadmium on transmembrane electric potential (Em) in maize roots. Journal Biologia Sekcia Botanica Biologia Sec. Bot. 2006, 61, рр.114 – 122.

Horovaya, A.I.; Strelchenko, Ye.D.; Rudenko, S.S. Tsytohenetychna otsinka mutahennoi dii khlorydy kadmiyu i khlorydu aliuminiiu ta modyfikuuiuchi dii selenu natriyu u korenevykh systemakh Pisum sativum [Cytogenetic evalution of mutagenic effects of cadmium chloride and aluminium chloride and sodium selenium modificatium in root systems Pisum sativum]. Tcytologiya i henetyka. 1999, 33, s. 52–56.

Yoshihara, T.; Hodoshima, H.; Miyano, Y.; Shoji, K.; Shimada, H.; Goto, F. Cadmium inducible Fe deficiency responses observed from macro and molecular views in tobacco plants. Plant and Cell Reports. 2006, 25, pp. 365–373. https://doi.org/10.1007/s 00299-005-0092-3.

Kuthanova, A.; Fisher, L.; Nick, P.; Opatrny, Z. Cell cycle phase-specific death response of tobacco BY-2 cell line to cadmium treatment. Plant Cell and Enviromemt. 2008, 31, pp. 1634–1643. https://doi.org/10.1007/s10535-015-0573-3

Howden, R.; Goldsbrough, P.D.; Andersen, C.R.; Cobbett, C.S. Cadmium-sensitive cad1 mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiology. 1995, 107, pp. 1059–1066. https://doi.org/10.1007/BF02191599

Kuthanova, A.; Gemperlova, L.;, Zelenkova S.; Eder, J.; Machackova, I.; Opatrny, Z; Cvikvova, M Cytological changes and alterations in polyamine contents induced by cadmium in tobacco BY2 cells. Plant Physiology and Biochemistry. 2004, 42, pp. 149–156. https://doi.org/10.1007/sl 1240-008-9389-6.

Seregin, I.V.; Ivanov, V.B. Fiziologicheskie aspekty toksicheskogo deystviya kadmiya i svinca na vishie rasteniya [Physolodycal aspect of the toxic effect of cadmium and lead on higher plants]. Fiziologiya tasteniy. 2002, 48, s.606–630.

Hagemeyer, J.; Kahle, H.; Breckle, S.-W.; Waisel, Y. Cadmium in Fagussylvatica L. trees and seedlings: Leaching, uptake and interconnection with transpiration. Water, Air, Soil Pollution. 1986, 29, рр. 347–359.

Hardiman, R.T.; Jacoby, B. Absorption and translocation of Cd in bush beans (Phaseolus vulgaris). Physiologia Plantarum. 1984, 61, рр. 670–674. https://doi.org/10/1111/j.1399-3054.1984.tb05189x

Gratao, P.L.; Pompeu, G.B.; Capaldi, F.R.; Vitorello, V.A.; Leo, P.J.; Ajivedo, R.A. Antioxidant response of Nicotiana tabacum cv.Bright Yellow 2 cells to cadmium and nickel stress. Plant Cell Tissue and Organ Culture. 2008, 94, рр. 73–83. https://doi.org/10.1007/sl 1240-008-9389-6

Zagoskina, N.V.; Honcharuk, E.A.; Alyiavina, A.К.; Izmeneniya v obrazovanii fenilnich soedineniy pri deystvii kadmiya na kallusnie kulturi, iniciirovannie iz razlichnih organov chayniho dereva [Changes in the formation of phenoliccompouds during the action of cadmium on callus cultures initiated from different organs of tea tree]. Fiziologiya rasteniy. 2007, 54, s.267–274.

Ebbs, S.D.; Zambrano, M.C.; Spiller, S.M.; Neville, M. Cadmiun sorption and efflux at the mesophyll layer of leaves from ecotype of the Zn/Cd hyperaccumulator Thlaspi caerulescens. New Phytologist. 2009, 181, рр. 626–636.

Korenkov, V.; King, B.; Hirschi, K.; Wagner, J. Root-selective expression of AtCAX4 and AtCAX2 results in reduces lamina cadmium in field-grown Nicotiana tabacum. Plant Biotechology Journal. 2009, 7, рр. 219–226. https://doi.org/10.1111/j.1467-7652.2008.00390.x

Morel, M.; Crouzet, J.; Gravot, A.; Auroy, P.; Leonhardt, N.; Vavasseur, A.; Richand, P. AtHVA a P1B-ATPase allowing Cd/Zn/Pb vacuolar storage in Arabidopsis. Plant Physiology. 2009, 149, рр. 894–904. http:/doi.org/10.1104/pp.108.130294.

Pittman, I.K.; Hirschi, K.D. Don’t shoot the (second) messenger: endomembrane transporters and binding proteins modulate cytosolic Ca2+ levels. Current Opinion Plant Biology. 2002, 63, рр. 257–262.

Shigaki, T.; Hirschi, K.D. Diverse functions and molecular properties emerging for CAX cation/H+ exchangers in plants. Plant Biology. 2006, 8, рр. 419–429. http:/doi.org/10.1055/s-2006-923950

Wu, Q.; Shigaki, T.; Wlliams, K.A.; Jcung-Sul, Han; Chang, K.K.; Kendal, D.; Hirschi, S.P.; Park, S. Expression of an Arabidopsis Ca2+/H+ antiporter CAX1 variant in petunia enhances cadmium tolerance and accumulation. Journal of Plant Physiology. 2011, 168, рр. 167–173. http//doi.org./10.1016/j.jol ph.2010.06.0050

Antosiewicz, D.M; Henning, J. Overexpression of LCT1 in tobacco enhanced the protective action against cadmium toxicity. Environmental Pollution. 2004, 129, рр. 237–245. http://doi.org./10.1016/j.envpol.2003.10.025

Clemens, S. Molecular mechanisms of plant metal tolerance and homeostasis Planta. 2001, 212, рр. 475–486. http://doi.org./10.1007/s004250000458

Bondgaard, M.; Bjerregaard, P. Association between cadmium and calcium uptake and distribution during the moult cycle of female shore crabs Carcinus maens: an in vivo study. Aquatic Toxicology. 2005, 72, рр. 17–28. http://doi.org./10.1016/j.aquatox.2004.11.017

Dziubinska, H.; Filek, M.; Krol, E.; Trebacz, K. Cadmium and selenium modulate slow vacuolar channels in rape (Brassica napus) vacuoles. Journal of Plant Physiology. 2010, 167, рр. 1566–1570. https://doi.org/10.1016/j.jplph.2010.06.016

Chen, J.; Zhu, C.; Lin, D.; Sun, Z.-X. The effects of Cd on lipid peroxidation, hydrogen peroxide content and antioxidant enzyme activities in Cd-sensitive mutant rice seedlings. Canadian Journal of Plant Science. 2007, 87, рр. 49–57.

Yang, H.Y.; Shi, G.X.; Xu, Q.S.; Wang, H.X. Cadmium effects on mineral nutrition and stressed-related indices in Potamogeton crispus. Russian Fiziologia rastenii (Russ.) 2011, 58, с. 213–220. https://doi.org/10.1134/S1021443711020245

Krotz, R.M.; Evangelou, B.P.; Wagner, G.J. Relationships between cadmium, zinc, Cd-peptide and organic acid in tobacco suspension cells. Plant Physiology. 1989, 91, рр. 780–787.

Farinati, S.; Dalcorso, G.; Varotto, S.; Furini, A. The Brassica juncea BjCdR15, ortholog of Arabidopsis TGA3 is a regulator of cadmium uptake. Transport and accumulation in shoots and confers cadmium tolerance in transgenic plants. New Phytologist. 2010, 185, рр. 964–978. https://doi.org/10.1111/j.1469-8137.2009.03132.x

Shim, D.; Hwang, J.-U.; Lee, J.; Lee, S.; Choi, J.; An, G.; Martinoia, E.; Lee, J. Orthologs of the class A4 heat shock transcription factor HsfA4 confer cadmium tolerance in wheat and rice. Plant Cell. 2009, 21, рр. 4031–4043 https://doi.org/10.1105/ tpc.109.066902.

Van de Mortel, J.E.; Schat, H.; Moerland, P.D.; van Themaat, L.; Ver, E.; van der Blankenstijn-de Vries, M.H.C.; Ghandilyan, A.; Tsiatsiani, S.; Aarts, M.G.M. Expression differences in response to cadmium in Arabidopsis thaliana and the related Zn/Cd- hyperaccumulator Thlaspi caerulescens. Plant, Cell and Enviroment. 2008, 31, рр. 301–324. https://doi.org/10.1111/j.1365-3040. 2007.01764.x.

Yeh, C.-M.; Hsiao, L.J.; Huang, H.-J. Cadmium activates a mitogen-activated protein kinase gene and MBP kinases in rice. Plant Cell Physiolgy. 2004, 45, рр.1306–1312.

Louie, M.; Kondor, N.; de Witt, J.G. Gene expression in cadmium-tolerant Datura innoxia: detection and characterization of DNAs induced in response to Cd2+. Plant Molecular Biology. 2003, 52, рр. 81–89. https://doi.org/10.1023/A:1023926225931

Polge, C.; Jaquinod, M.; Holzer, F.; Bouguignon, J.; Walling, L.; Brouquisse, R. Evidence for the existence in Arabidopsis thaliana of the proteasome proteolytic pathway. Activation in response to cadmium. Journal Biologycal Chemistry. 2009, 284, рр. 35412–35424. https://doi.org/10.1074/jbc.M 109.035394

Qing, G.; Zhai, X.-G.; Han, Z.-X. Cloning andsequence analysis of new gene coding drought tolerance, LEA3 from Tibet hull-less barley. Zuowu xuebao=Acta Agraria Sinica. 2007, 33, рр. 292–296.

Tioleter, D.; Jaquinod, M.; Mangavel, C.; Passirani, C.; Saulner, P.; Manon, S.; Teyssier, E.; Payet, N.; Avelange-Macherel, M.-H.; Macherel, D. Structure and function of a mitochondrial late embryogenesis abundant protein by desiccation. Plant Cell. 2007, 19, рр.1580–1587.

Verslues, P.Е.; Bray, E.A. LWR1 and LWR2 are required for osmoregulation and osmotic adjustment in Arabidopsis. Plant Physiology. 2004, 136, рр. 2831–2842.

Fan, L.-M.; Wu, W.-H.; Yang, Y.-Y. Identification and characterization the inward K+ channel in the plasma membrane of Brassica pollen protoplasts. Plant and Cell Physiology. 1999, 40(8), рр. 859–865.

Rubio, F.; Nieves-Cordones, M.; Aleman, F.; Martinez, V. Relative contribution of AtHAK5 and AtHAK1 to K+ uptake in the high-affinity range of concentrations. Physiologia Plantarum. 2008, 134, рр. 598–608. https://doi.org/10.1111/j.1399-3054.2010.01354.x

Wang, S.-M.; Zhang, J.-L.; Flowers, T.J. Low-affinity Na+ uptake in the halophyte Suaeda maritime. Plant Physiology. 2007, 145, рр. 559–571.

Bertl, A.; Reid, J.D.; Sentenac, H.; Slayman, C.L. Functional comparison of plant inward – rectifier channels expressed in yeast. Journal of Experimental Botany. 1997, 48, рр.405–413.

Rubio, F.; Aleman, F.; Nieves-Cordones, M.; Vicente, M. Studies on Arabidopsis athak5, atakt1 double mutants disclose the range of concentrations at which AtHAK5, AtAKT1 and unknown systems mediated K+ uptake. Physiologia Plantarum. 2010, 139, рр. 220–228.

Maliga, P. Isolation and characterization of mutants in plant cell culture. Annual Review of Plant Physiology. 1984, 35, рр. 519–542.

Dracup, M. Why does in vitro cell selection not improve the salt tolerance of plants? Genetic aspects of plant mineral nutrition. Kluwer Academic Publishers. 1993, рр. 137–142.

Flores, E.; Sarrati, A.; Fabre, F.; Alibert, G. Genotypic variation and chromosomal location of QTLs for somatic embryogenesis revealed by epidermal layers culture of recombinant inbred lines in the sunflower (Helianthus annuus L.). Theoretical and Applied Genetetics. 2000, 101, рр. 1307–1312. https://doi.org/10/1007/s.001220051611.

Flores, E.; Gentɀbittel, L.; Kayyal, H.; Alibert, A. AFLP mapping QTLs for in vitro organogenesis traits using recombinant inbred lines in sunflower (Helianthus annuus L.). Ibid. 2000, 101, рр.1299–1306. https://doi.org/10.1007/s001220051610.

Ubaydullaeva, K.; Sultonova, S.; Buriev, Z.; Bolkiev, A.; Abdullaev, S. In vitro regeneration of pomegranate Punica granatum L.) from nodal explants. Sceintific Bulletin of Namangan State University. 2019, 1, рp. 134-139.

Sergeeva, L.E. Л.Е. Биология и биотехнология злаков in vitro. Клеточная селекция для повышения осмоустойчивости кукурузы и пшеницы [Biole aogy and biotecthology of cereal in vitro. Cell selection for improving osmnd wheatotolerance in maiz]. Киев, Кондор. 2020, 125с.

Deglene, L.; Lesignes, P.; Alibert, G.; Saffari, A. Genetic control of organogenesis in cotyledons of sunflower (H. annuus). Plant Cell, Tissue and Organ Culture. 1997, 48, рр. 127–130.

Tyshchenko, E.N.; Mykhalskaya. S.I. Agrobacterialnaya transformaciya podsolnechnika [Agrobacterium transformation sunflower]. Fiziologiya i biochimiya kukturnich rastenii. 2006, 38, s.187–196.

Sergeeva, L.E. Izmememiya kultury kletok pod deystviem stressa [Changes in cell culture under stress]. Kiev, Logos. 2001, 100с.

Sergeeva, L.E.; Bronnikova, L.I. Cadmium ions in cell selection for obtaining wheat cell forms tolerant to water stress. Bulletin of рthe Cherkasy University, Series Biological Science. 2019, 2, рp.74-80. https://doi.org/10.31651/2076-5835-2018-1-2019-2-74-80

Sergeeva, L.E.; Bronnikova, L.I. Cell selection with barium ions for obtaining genetically modified salt tolerant tobacco forms. Bulletin of the Cherkasy University, Series Biological Science. 2020, 1, рр. 71-78. https://doi.org/10.31651/2076-5835-2018-1-2020-1-71-78.

Rout, J.R.; Kerri, R.J.; Panighrahi, D.; Sahoo, S.L.; Pradham, C.; Ram, S.S.; Chakraborty, A.; Sudarsham, M. Biochemical, molecular, and elemental profiling of Withania somnifera L. with response to zinc stressEnvironment Science and Pollution. Researched Institute. 2019, 26(4), рр.4116-4129. https://doi.org/10.1007/s11356-018-3926-6

Ramirez-Benites, J.E.; Ernandes-Sotomayor, S.M.; Muňoz-Sanches, J.A. Gene Expression Analysis Suggests Temporal Differential Response to Aluminum in Coffea arabica Cultivars. Tropical Plant Biology. 2013, 6(4), рр. 191–198 https://doi.org/10.1016/j.jinorbio.2009.07.016.

Luo, J.S.; Xiao, Y.; Yao, J.; Vu, Z.; Yang, Y.; Ismoil, A.M.; Chjan, Z. Overexpression of a defension-like gene CAL2 enhances cadmium accumulation in plants. Frontiers in Plant Science. 2020, 27, рр.211–217. Sci. 11:217. https://doi.org/10.3389/fpls 2020.00217.

Munir, M.; Khan, Z. I.; Ahmad, K.; Wajid, K.; Bashir, H.; Malik, I. S.; Nadeem, M.; Ashfaq, A.; Ugulu, I. Transfer of heavy metals from different sources of fertilizers in wheat variety (Galaxy-13). Asian Journal of Biologycal Sciences. 2019, 12, рр. 832–841.

Hasegawa, P.M.; Bressan, R.A.; Zhu, J.-K.; Bohnert, H.J. Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology. 2000, 51, рр.463–499. https://doi.org/10.1146/annurev.arplant.51.1.463

Arnholdt-Shmitt, B. Stress-induced cell reprogramming. A role for global genome regulation. Plant Physiology. 2004, 136, рр.2579–2586.

Singh, S.; Parihar, P.; Singh, R.; Singh, V.P.; Prasad, S.M. Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics and ionomics. Frontiers in Plant Science. 2015, 22, рр.1-31. https://doi.org/103389/fpls 201501143.

Published

2023-06-30

How to Cite

Barium and cadmium heavy metal ions – reactions of plants and cell cultures. (2023). Notes in Current Biology, 1 (5), 9-14. https://doi.org/10.29038/NCBio.23.1-2