Influence of C60 fullerenes the mechanokinetics of the fatigue development in rats skeletal muscles caused by the cardioembolic insult peptides

Authors

  • Iryna Dmytruk Lesia Ukrainka Volyn National University

DOI:

https://doi.org/10.29038/NCBio.21.1.102-110

Keywords:

С60 fullerenes, cardioembolic stroke, peptides, m. soleus, muscle fatigue

Abstract

The purpose of the study was to determine the effect of the peptides fraction of the cardioembolic stroke acute phase on the parameters of skeletal muscle contraction, and to find out therapeutic effect on the development of muscle dysfunction of water-soluble fullerene С60. Plasma samples were taken from healthy individuals and patients with cardioembolic ischemic stroke. Peptide injections were administered intravenously 2 hours before the start of the experiment. С60 fullerenes were administered one hour after peptide administration. The following experimental groups were identified: control, cardioembolic stroke (acute phase), cardioembolic stroke + С60 fullerene injections. Analysis of fatigue mechanograms showed a significant reduction in the time of muscle fatigue onset, muscle power and the maximum possible level of force generation during using peptides of the cardioembolic stroke acute phase. Therapeutic use of С60 fullerene injections significantly reduces the level of these pathologies and stabilizes the biomechanical parameters of muscle contraction. С60 fullerenes have been shown to be able to maintain active muscle within physiological limits throughout the contraction process. Thus, С60 fullerenes can be considered as potential agents capable of correcting pathological conditions of the muscular system.

References

1. Brown, I. A. M.; Diederich, L.; Good, M. E. et al. Vascular smooth muscle remodeling in conductive and resistance arteries in hypertension. Arteriosclerosis, thrombosis, and vascular biology; 2018, 38 (9), pp 1969-1985. doi: 10.1161/ATVBAHA.118.311229.
2. Llombart, V.; Garcia-Berrocoso, T.; Bustamante, A. et al. Cardioembolic stroke diagnosis using blood biomarkers. Current cardiology reviews; 2013, 9 (4), pp 340-352. doi: 10.2174/1573403x10666140214122633.
3. Tsentr hromadskoho zdorovia. 29 zhovtnia – vsesvitnii den borotby z insultom. https://phc.org.ua/news/29-zhovtnya-vsesvitniy-den-borotbi-z-insultom (in Ukrainian)
4. Torhalo, Ye. O.; Raietska, Ya. B.; Bohdanova, O. V. ta in. Osoblyvosti protsesiv vilnoradykalnoho okysnennia lipidiv za umov eksperymentalnoho hemorahichnoho insultu, a takozh vyvchennia dii antyoksydantnykh preparativ [Features of the processes of free-radical lipids oxidation under the experimental hemorrhagic stroke, and also research of antioxidant drugs action]. Fizyka zhyvoho; 2009, 17 (1), s.155-158. (in Ukrainian)
5. Mytskan, B.; Yedynak, H.; Ostapiak, Z. ta in. Insult: riznovydy, faktory ryzyku, fizychna reabilitatsiia [Stroke: causes, factors of risk, physical rehabilitation]. Fizychne vykhovannia, sport i kultura zdorovia u suchasnomu suspilstvi; 2012, 3 (19), s. 295-302. (in Ukrainian)
6. Radak, D.; Resanovic, I.; Isenovic, E. R. Link between oxidative stress and acute brain ischemia. Angiology; 2014, 65(8), pp 667-676. doi: 10.1177/0003319713506516.
7. Kamel, H.; Healey, J. S. Cardioembolic stroke. Circulation research; 2017, 120 (3), pp 514-526. doi: 10.1161/CIRCRESAHA.116.308407.
8. Piccardi, B.; Giralt, D.; Bustamante, A. et al. Blood markers of inflammation and endothelial dysfunction in cardioembolic stroke: systematic review and meta-analysis. Biomarkers; 2017, 22 (3-4), pp 200-209. doi: 10.1080/1354750X.2017.1286689.
9. Boikiv, N. D. Dynamika produktsii faktoriv anhiohenezu pry ishemichnomu insulti zalezhno vid tiazhkosti perebihu zakhvoriuvannia [Production dynamics of angiogenesis factors of ischemic stroke depending on the desease severity]. Visnyk problem biolohii i medytsyny; 2014, 3 (2), c. 106-109. (in Ukrainian)
10. Park, I. H.; Hwang, H. M.; Jeon, B. H. et al. NADPH oxidase activation contributes to native low-density lipoprotein-induced proliferation of human aortic smooth muscle cells. Experimental & molecular medicine; 2015, 47 (6), :e168. doi: 10.1038/emm.2015.30.
11. Yang, C.; Yang, Y.; DeMars, K. M. et al. Genetic deletion or pharmacological inhibition of cyclooxygenase-2 reduces blood-brain barrier damage in experimental ischemic stroke. Frontiers in neurology; 2020, 11, 887. doi: 10.3389/fneur.2020.00887.
12. Lian, T.; Qu, D.; Zhao, X. et al. Identification of site-specific stroke biomarker candidates by laser capture microdissection and labeled reference peptide. International Journal of Molecular Sciences; 2015, 16(6), pp 13427-13441. doi: 10.3390/ijms160613427.
13. Bolayir, A.; Gokce, S. F.; Cigdem, B. et al. Can SCUBE1 be used to predict the early diagnosis, lesion volume and prognosis of acute ischemic stroke? Turkish Journal of Biochemistry; 2019 44 (1), pp 16-24. doi :10.1515/tjb-2018-0040.
14. Maida, C. D.; Norrito, R. L.; Daidone, M. et al. Neuroinflammatory mechanisms in ischemic stroke: focus on cardioembolic stroke, background, and therapeutic approaches. International journal of molecular sciences; 2020, 21 (18): 6454. doi: 10.3390/ijms21186454.
15. Wei, L. K.; Quan, L. S. Biomarkers for ischemic stroke subtypes: a protein-protein interaction analysis. Computational biology and chemistry; 2019, 83, 107116. doi: 10.1016/j.compbiolchem.2019.107116.
16. Zhao, X.; Yu, Y.; Xu, W. et al. Apolipoprotein A1-unique peptide as a diagnostic biomarker for acute ischemic stroke. International journal of molecular sciences; 2016, 17 (4), 458. doi:10.3390/ijms17040458.
17. Shen, M.-Y.; Chen, F.-Y.; Hsu, J.-F. et al. Plasma L5 levels are elevated in ischemic stroke patients and enhance platelet aggregation. Blood; 2016, 127 (10), pp 1336-1345. doi: 10.1182/blood-2015-05-646117.
18. Richard, S.; Lagerstedt, L.; Burkhard, P. R. et al. E-selectin and vascular cell adhesion molecule-1 as biomarkers of 3-month outcome in cerebrovascular diseases. Journal of inflammation (London, England); 2015, 12, 61. doi: 10.1186/s12950-015-0106-z.
19. BrasileiroI, J. L.; Fagundes, D. J.; Miiji, L. O. et al. Ischemia and reperfusion of the soleus muscle of rats with pentoxifylline. European Journal of Physiotherapy; 1979, 379, pp 209–214.
20. Irwin, J. C.; Fenning, A. S.; Vella, R. K. Geranylgeraniol prevents statin-induced skeletal muscle fatigue without causing adverse effects in cardiac or vascular smooth muscle performance. Translational Research; 2020, 215:17-30. doi: 10.1016/j.trsl.2019.08.004.
21. Springer, J.; Schust, S.; Peske, K. et al., Catabolic signaling and muscle wasting after acute ischemic stroke in mice: indication for a stroke-specific sarcopenia. Stroke; 2014, 45 (12), pp 3675-3683. doi: 10.1161/STROKEAHA.114.006258.
22. Nguyen, A.; Mellion, M.; Gilchrist, J. et al. Experimental alcohol-related peripheral neuropathy: role of Insulin/IGF resistance. Nutrients; 2012, 4 (8), pp 1042–1057.
23. Xie, Q.; Perez–Cordero, E.; Echegoyen, L. Electrochemical detection of c60 and c70 enhanced stability of fullerides in solution. Journal of the american chemical society; 1992, 114, pp 3978–3980.
24. Smith, A.; Hayes, G.; Romaschin, A.; Walker, P. The role of extracellular calcium in ischemia/reperfusion injury in skeletal muscle. Journal of surgical research; 1990, 49, pp 153–156.
25. Tountas, C. P.; Bergman, R. A. Tourniquet ischemia: ultrastructural and histochemical observa-tions of ischemic human muscle and of monkey muscle and nerve. Journal of Hand Surgery; 1977, 31, pp31–37.42.
26. Tsai, M. C.; Chen, Y. H.; Chiang, L.Y. Polyhydroxylated C60 fullerenol, a novel free-radical trapper, prevented hydrogen peroxide-and cumene hydroperoxide-elicited changes in rat hippocampus in vitro. The Journal of Pharmacy and Pharmacology; 1997, 49 (4), pp 438–445.
27. Cuzzocrea, S.; Riley, D. P.; Caputi, A. P.; Salvemini, D. Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury. Pharmacological reviews; 2001, 53, pp 135–159.
28. Prylutska, S. V.; Grynyuk, I. I.; Matyshevska, O. P.; et al.Antioxidant properties of C60 fullerenes in vitro. Fullerenes. Nanotubes. Carbon Nanostructures; 2008, 16, pp 698–705.
29. Kamel, H.; Healey, J. S. Cardioembolic Stroke. Circulation research; 2017, 120 (3), pp 514–526. doi:10.1161/CIRCRESAHA.116.308407.
30. Farhadi, M. B, Fereidoni, M. Neuroprotective effect of menaquinone-4 (MK-4) on transient global cerebral ischemia/reperfusion injury in rat. PLOS ONE; 15 (3), e0229769. doi: 10.1371/journal.pone.0229769.
31. Zhao, Y.; Gan, Y.; Xu, G. et al. MSCs-derived exosomes attenuate acute brain injury and inhibit microglial inflammation by reversing cyslt2r-erk1/2 mediated microglia m1 polarization. Neurochemical Research.; 2020, 45 (5), pp 1180-1190. doi: 10.1007/s11064-020-02998-0.

Published

2021-09-16

How to Cite

Dmytruk, I. (2021). Influence of C60 fullerenes the mechanokinetics of the fatigue development in rats skeletal muscles caused by the cardioembolic insult peptides. Notes in Current Biology, (1 (1), 102–107. https://doi.org/10.29038/NCBio.21.1.102-110

Issue

Section

Human and Animal Physiology