Effects of a trematode infestation on the content of certain groups of lipids in the body of the great pond snail
DOI:
https://doi.org/10.29038/2617-4723-2020-1-389-66-71Keywords:
Lymnaea stagnalis, non-polar lipids, phospholipids, trematode infestation, metabolic adaptationAbstract
The peculiarities of biochemical adaptation processes of mollusks under the influence of biological factors (trematode invasion) arouse considerable interest in the mechanisms of individual resistance and adaptive abilities of these animals on the one hand, and the need to clarify the most complex relationship between a parasite and a host on the other.
The analysis of literature sources showed the singularity, fragmentation and some ambiguity of the presented data concerning the effect of partenit trematodes on the content of some lipid groups in tissues and organs of Lymnaea stagnalis, which determined the purpose of this research.
The features of the content of triacylglycerols (TAG), diacylglycerols (DAG), non-esterified fatty acids (NEFA) and phospholipids (PL) in the hemolymph, hepatopancreas, mantle and foot of freshwater gastropods Lymnaea stagnalis are studied. It is determined that in studied mollusks the trematode infestation effect causes a decrease of TAG quantity in the hemolymph, hepatopancreas and foot (30,40–43,37% less) and increases it to 66,02% in the mantle. The decrease of DAG in the hepatopancreas and mantle (24,0% less) of infested animals compared to non-infested ones is found. As for NEFA, the reduction of this fraction of 24,75% in the hepatopancreas and its increase in the mantle (32,51% more). It is shown that the content of PL increases 1,22–3,79 times in all studied organs of the great pond snail. The tissue and organ specifity of TAG, DAG, NEFA and PL distribution in the body of infested and intact L. stagnalis.
The highest levels of TAG of non-infested pond snails were observed in the most metabolically active organs – the hepatopancreas and the leg. As for DAG and NEFAs, these groups were found only in the hepatopancreas and the mantle of the studied animals, and the content of structural PL in the hepatopancreas exceeds their composition in the mantle by 3.24 times and in the leg by 36% (p <0.05). The highest indicators of TAG content of infected specimen are found in the leg and the mantle of mollusks, the lowest – in the hemolymph.
The highest indicators of the content of DAG and NEFAs are recorded in the mantle, and it is possible to build the following series for the content of PhL in the body of L.stagnalis (in the direction of the indicator growth): leg → mantle → hepatopancreas.
References
2. Fokina, N. N.; Nefedova, Z. A.; Nemova, N. N. Lipidnyj sostav midij Mytilus edulis L. Belogo morja. Vlijanie nekotoryh faktorov sredy obitanija [Lipid Composition of Mytilus edulis L. Mussels from the White Sea. Effect of Some Environmental Factors]; Karel'skij nauchnyj centr RAN: Petrozavodsk, 2010; 243 s. (In Russian)
3. Лось, Д. А. Восприятие сигналов биологическими мембранами: сенсорные белки и экспрессия генов [Perception of signals by biological membranes: sensor proteins and expression of genes]. Соросовский образовательный журнал, 2001, 7(9), c 14–22. (In Russian)
4. Hlebovich, V. V. Akklimacija zhivotnyh organizmov: osnovy teorii i prikladnye aspekty [Acclimation of animal organisms: basic theory and applied aspects]. Uspehi sovr. biol. 2017, 137 (1), c 20–28. (In Russian)
5. Folch, J. A.; Lees, M.; Sloante Stanley, G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957, 226 (1), pp 497–509.
6. Kejts, M. Tehnika lipidologii. Vydelenie, analiz i identifikacija lipidov [Techniques of lipidology: isolation, analysis and identification of lipids]; Mir: Moskva, 1975; 322 s. (In Russian)
7. Vaskovsky, V. E.; Kastetsky, E. V.; Vasedin, I. M. A universal reagent for phospholipids analisis J. Chromatogr. 1985, 114(1), pp 129–141.
8. McManus, D. P.; Marshall, I.; James, B.L. Lipids in digestive gland of Littorina saxatilis rudis (Maton) and in daughter sporocysts of Microphallus similis (Jäg. 1900). Exp Parasitol. 1975, 37(2), pp 157–163.
9. Shakarbaev, U. A.; Mingbaev, A. S.; Akramova, F. D.; Shakarboev, E. B.; Azimov, D. A. Changes in the structure and functions of mollusc organs under the effect of Orientobilharzia turkestanica larvae. Vestnik zoologii. 2013, 47(5), pp 57–61.
10. Vasil'eva, O. B.; Lavrova, V. V.; Ieshko, E. P.; Nemova, N. N. Izmenenie lipidnogo sostava pecheni nalima Lota lota (L.) pri invazii plerocerkoidami Triaenophorus nodulosus [Change of lipid composition of livers burbot Lota Lota (L.) at invasion of plerocercoid Triaenophorus nodulosus]. V Sovremennye problemy fiziologii i biohimii vodnyh organizmov Tom I. Jekologicheskaja fiziologija i biohimija vodnyh organizmov. Sbornik nauchnyh statej; KarNC RAN: Petrozavodsk, 2010; c 20–24. (In Russian)
11. Nacheva, L. N.; Sumbaev, E. A. Mikromorfologicheskie izmenenija tkanej molljuskov pri razvitii v nih lichinok trematod [Micromorphological peculiar tissue changes molluscs in the development of larvae of trematodes]. Teorija i praktika parazitarnyh boleznej zhivotnyh 2013, 14, s 263–265. (In Russian)
12. Tkach, P.; Vysockaja, R. U.; Kerc, E. S. Vlijanie gel'mintnoj invazii na lipidnyj obmen bokoplavov Belogo morja [The effect of helminth invasion on lipid metabolism in ampiiipoda of the White sea]. Parazitologija 2010, 44, 2, s 128–134. (In Russian)
13. Senik, Ju. І.; Homenchuk, V. O.; Kurant, V. Z.; Grubіnko, V. V. Rol' lіpіdіv eritrocitarnih membran u formuvannі rezistentnostі do jonіv cinku [The role of erythrocyte membrane lipids in forming resistance of fish to the action of zinc ions]. Bіologіja tvarin 2013, 15(3), s 111–119. (In Ukrainian)
14. Arakelova, K. S.; Chebotareva, M. A.; Zabelinskii, S. A. Physiology and lipid metabolism of Littorina saxatilis infected with trematodes. Dis Aquat Organ. 2004, 60(3), pp 223–231.