Histological features of rat muscle fibers under conditions of ischemia and used C60 fullerenes as antioxidants

Authors

  • Oleksandr Motuziuk Lesya Ukrainka Eastern European National University https://orcid.org/0000-0002-1520-0721
  • Iryna Dmytruk Lesya Ukrainka Eastern European National University
  • Dmitro Melnichuk Lesya Ukrainka Eastern European National University

DOI:

https://doi.org/10.29038/2617-4723-2019-388-4-125-145

Keywords:

ischemia, C60 fullerenes, muscle fibers, light microscopy

Abstract

The purpose of the article was to analyze the histological changes in the gastrocnemius muscle under conditions of experimental ischemia of different duration and simultaneously administration of C60 fullerenes as an antioxidant.
The experiment was conducted on inbred Wistar line rats weighing 140-160 g. The animals were divided in groups: control; animals with ischemia (1, 2 and 3 hours); control, animals with ischemia (1, 2 and 3 h), animals with ischemia (1, 2 and 3 h) and C60 fullerenes administration. Unilateral vascular ischemia was induced by tourniquet ligating the main arteries. Histologic processing of the tissue was carried out according to standard histological methods, stained with Van Gison method. Morphometric indices (thickness of muscle fibers and the size of interfibrillary space) were measured using the VideoTest Morphology 5.0 program. The therapeutic effect of an aqueous colloidal solution of C60 fullerenes on the level of pathomorphological changes in the test muscle was also analyzed. The musculus gastrocnemius is resistant to light ischemic damages under condition of intraperitoneal administration of C60 fullerenes, which are potent antioxidants and are able to absorb free radicals effectively. However, studies have shown that with increasing the duration of ischemic damage, the protective effect of fullerenes decreases in proportion to the duration of ischemia. In particular, the initial tendency to the destruction of muscle fibers, the disturbance of the membrane integrity, the replacement of the muscle tissue by the connective tissue , the severance of sarcomeres, the loss of the transverse striated , the absence of nuclei, the hyperemia of the capillary duct are noted. Necrotic-destructive changes that occur due to the excess of no inactivated superoxide and hydroxide radicals also observed. Thus, the laboratory study can serve as a basis for the development of drugs for muscle pathologies, and will help to develop a comprehensive methodology for the treatment of early stages of ischemic damage to human skeletal muscle.

References

1. Bogdanov O. A.; Bulycheva I. V.; CHekareva G. A. Morfologicheskaya harakteristika izmenenij skeletnih myshc pri ostroj ishemii konechnostej i postishemicheskoj recirkulyacii. Patologicheskaya anatomiya cirkulyatornyh rasstrojstv i narushenij tkanevogo gomeostaza: sb. nauch. tr., M., 1987; s 49-53. (in Russian)
2. Bilobrov V.; Vulytska D.; Nozdrenko O. Zmina dynamichnoi vidpovidi aktyvnoho miazu muscle soleus za umov yoho ishemizatsii u alkoholizovanykh shchuriv pry vvedenni S60 fulerenu. Scientific Journal «Science Rise: Biological Science»; 2017, 5 (8), s 27-32. (in Ukrainian)
3. Zavodskyi D.; Nozdrenko D.; Khoma O.; Sorokata V. Zmina shvydkisno-sylovykh pokaznykiv skorochennia homilkovoho miazu shchura za umov shtuchno vyklykanoi vaskuliarnoi ishemii. Visnyk Kyivskoho universytetu. im. Tarasa Shevchenka. Seriia biolohichna; 2013, 63, s 5–7. (in Ukrainian)
4. Motuziuk O. P.; Nozdrenko D. M.; Stepaniuk Ya. V.; Zavodovskyi D. O. Ultrastrukturni zminy miofibryl u liudyny pry ishemichnii kontrakturi [Ultrastructure Changes of Myofybryl Under Condition of Ischemic Contracture in Human]. Naukovyi visnyk Volynskoho natsionalnoho universytetu im. Lesi Ukrainky: Biolohichni nauky; 2012, 2, s 89–92. (in Ukrainian)
5. Khoma O.; Soroka V.; Nozdrenko D. Morfolohichni zminy sarkomera shtuchno ishemizovanoho miaza shchura. Visnyk Kyivskoho natsionalnoho universytetu imeni Tarasa Shevchenka. Kyivskyi nats.. un-t im. Tarasa Shevchenka; 2012, s 28-30. (in Ukrainian)
6. Eleckij A. V.; Smirnov B. M. Fulereny i struktury ugleroda [Fullerines and the structures of carbon]. Usp. fiz. nauk; 1995,9, s 977–109. (in Russian)
7. Labille J.; Brant J.; Villieras F.; at al. Affinity of C60 fullerene with water. Fuller. Nanotub. Carb. Nanostruct; 2006, 14, pp 307–314.
8. Cuzzocrea S.; Riley D. P.;, Caputi A. P.;, Salvemini D. Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury. Pharmacol Rev; 2001, 53. pp 135-159.
9. Dahleback L. O.; Rais O. Morphologie changes in striated muscle following ischemia. Immediate pastischemic phase. Acta chir. Scand; 1966, 131, pp 430.
10. Deguchi S.; Alarg R.; Tsujii K. Stable dispersions of fullerenes C60 and C70 in water. Preparation and characteristics. Langmuir.; 2001, 17, pp 6013–6017. https://doi.org/10.1021/la010651o
11. Ryan J.; BatemanH.; Stover A.; Gomez G.; et al. Fullerene Nanomaterials Inhibit the Allergic Response. The Journal of Immunology; 2007, 179, pp. 665-672.
12. BrasileiroI J. L.; Fagundes D. J.; Miiji L. O.; at al. Ischemia and reperfusion of the soleus muscle of rats with pentoxifylline. Eur. J of Phisio; 1979, 379, pp 209 – 214.
13.Kauko A.; Hjelt L. Morphological changes in striated muscle during ischemia. A clinical and histological study in man. Actaorthop. Scandinav; 1998, 39, pp 13-19. https://doi.org/10.3109/17453676808989435
14. Kolosnjaj H.; Szwarc H.; Moussa F. Toxicity studies of fullerenes and derivatives. Adv. Exp. Med. Biol; 2007, 620, pp 168–180.
15. Korthals J.; Maki T.; Gieron M. Nerve and muscle vulnerability to ischemia. J Neurol Science; 1985, 71, pp 283-290. https://doi.org/10.1016/0022-510x(85)90066-8
16. Krustic P. J.; Wasserman Е.; Keizer P.N.; Morton J.R.; Preston K.F. Radical reactions of С60. Science; 1991, 254, pp 1183-5.
17. Lai H.; Chen W.; Chiang L. Free radical scavenging activity of fullerenol on the ischemia-reperfusion intestine in. World J Surg; 2000, 24(4),pp 450 – 458. https://doi.org/10.1007/s002689910071
18. Lai Y.; Murugan P.; Hwang K. Fullerene derivative attenuates ischemia-reperfusion-induced lung injury. Life Science; 2003, 72 (11), pp 1271-1278. https://doi.org/10.1016/s0024-3205(02)02374-3
19. Badhwar A.; Dungey A. A.; Harris K. A.; et al. Limitations of ischemic tolerance in oxidative skeletal muscle: perfusion vs tissue protection. J Surg Res; 2003, 109, pp 62 – 67. https://doi.org/10.1016/s0022-4804(02)00044-6
20. Littlefield R.S.; Fowler V. M. Thin filament length regula-tion in striated muscle sarcomeres: pointedend dynamics go beyond a nebulin ruler. Semin Cell Dev Biol; 2008, 19, pp 511–519. https://doi.org/10.1016/j.semcdb.2008.08.009
21. Mastren F. A. Compartmental syndrome: a unified concept. Clin.Orthop; 1975, 113.
22. Skjeldal S.; Grogaard B.; Reikerås O.; at. al.Model for skeletal muscle ischemia in rat hindlimb: evaluation of reperfusion and necrosis. Eur Surg Res; 1994 ,26, pp 94-100. https://doi.org/10.1159/000129323
23. Morris T.E.; Sulakhe P. V. Sarcoplasmic reticulum Ca2+-pump dysfunction in rat cardiomyocytes briefly exposed to hydroxyl radicals. Free Rad Biol Med; 1997,22, pp 37–47. https://doi.org/10.1016/s0891-5849(96)00238-9
24. Nguyen A.; Mellion M.; Gilchrist J.; et al. Experimental Alcohol-Related Peripheral Neuropathy: Role of Insulin/IGF Resistance. Nutrients; 2012, .4 (8), pp 1042-1057. https://doi.org/10.3390/nu4081042
25. Nozdrenko D. M.; Bogutska K. I.; Prylutskyy Y. I.; Ritter U. C60 fullerene effect on the dynamics of fatigue processes in rat soleus muscle after ischemia-reperfusion. Biotechnologia Acta; 2014, 7, pp 43-51. https://doi.org/10.15407/biotech7.03.043
26. Pipinos I.; Judge A.; Selsby J.; et al. The myopathy of peripheral arterial occlusive disease. Oxidative stress, neuropathy, and shift in muscle fiber type. Vascular and Endovascular Surgery; 2008, 42, 101-102. https://doi.org/10.1177/1538574408315995
27. Prylutska S. V.; Grynyuk I. I.; Matyshevska O. P.; et al. Antioxidant properties of C60 fullerenes in vitro. Fullerenes. Nanotubes. Carbon Nanostructures; 2008, 16, pp 698–705. https://doi.org/10.1080/15363830802317148
28. Prylutska S. V. Matyshevska O. P.; Grynyuk I. I.; et al. Biological effects of C60 fullerenes in vitro and in a model system. Mol. Cryst. Liq. Cryst; 2007, 468, pp 265–274.
29. Reilly M.; McKoy G.; Mantle D.; et al. Protein and mRNA levels of the myosin heavy chain isoforms I, IIa, IIx and IIb in type I and type II fibre predominant rat skeletal muscles in response to chronic alcohol feeding. J. Muscle Res. Cell Motil; 2000, 21, pp 763-773.
30. Sabido F. Skeletal muscle ischemia-reperfusion injury: a review of endothelial cell-leukocyte. J. Invest Surg; 1994, 7, pp 39-47.
31. Shakil H.; Gurule M.; Larson R. Amelioration of ischemia-reperfusion injury with cyclic peptide blockade ofICAM-1. American Journal of Physiolo- gy Heart and Circulatory Physiology Published; 2003, 284, pp 1260-1268. https://doi.org/10.1152/ajpheart.00840.2002
32. Simonides W. S.; Hardeveld C. An assay for sarcoplasmic reticulum Ca2+-ATPase activity in muscle homogenates. Anal Biochem; 1990, 191, pp 321–331. https://doi.org/10.1016/0003-2697(90)90226-y
33. Appell H. J.; Gloser S.; Duarte J. A.; at al. Skeletal muscle damage during tourniquetinduced ischaemia. The initial step towards atrophy after orthopaedic surgery. Eur J Appl Physiol; 1993, 67, pp 342-347. https://doi.org/10.1007/bf00357633
34. Sabido F.; Milazzo V. J.; Hobson R. W.; Duran W. N. Skeletal Muscle Ischemia-Reperfusion Injury: A Review of Endothelial Cell-Leukocyte Interactions. Journal of Investigative Surgery; 1994, 7, pp 39–47. https://doi.org/10.3109/08941939409018281
35. Vignaud A. C.; Hourde C. F.; Medja F. O.; at al Skeletal muscle repair after ischemia-reperfusion injury in mice. Biomedicine and Biotechnology; 2010, 10, pp 347 – 356. https://doi.org/10.1155/2010/724914
36. Smith A.; Hayes G.; Romaschin A.; Walker P. The role of extracellular calcium in ischemia/reperfusion injury in skeletal muscle. J Surg. Res; 1990, 49, pp 153-156. https://doi.org/10.1016/0022-4804(90)90254-y
37. Colburn M. D.; Quiñones-Baldrich W. J.; Gelabert H. A.; at al. Standardization of skeletal muscle ischemic injury. J Surg Res; 1992,52(4), pp 309. https://doi.org/10.1016/0022-4804(92)90108-c
38. Appell H. J.; Duarte J. A.; Remiao F.; at al. Structural alterations of skeletal muscle induced by ischemia and reperfusion . Basic Appl . Miol; 1999, 9,pp 263-268.
39. Scharff P.; Risch K.; Abelmann L.; et. аl. Structure of C60 fullerene in water: spectroscopic data. Carbon; 2004, pp 1203–1206.
40. Greising S. M.; Gransee H. M.; Mantilla C. B.; Sieck G. C. Systems biology of skeletal muscle: fiber type as an organizing principle WIREs. Syst Biol Med; 2012, 10, pp 1002 – 1184. https://doi.org/10.1002/wsbm.1184
41. Tountas C. P.; R. A. Bergman R. A. Tourniquet ischemia: ultrastructural and histochemical observa-tions of ischemic human muscle and of monkey muscle and nerve. Journal of Hand Surgery; 1977, 31, pp 31-37. https://doi.org/10.1016/s0363-5023(77)80007-5
42. Tsai M. C.; Chen Y. H.; Chiang L. Y. Polyhydroxylated C60 fullerenol, a novel free-radical trapper, prevented hydrogen peroxide- and cumene hydroperoxide-elicited changes in rat hippocampus in vitro. J Pharm Pharmacol; 1997, 49 (4), pp 438-445. https://doi.org/10.1111/j.2042-7158.1997.tb06821.x
43. Wang I. C.; Tai L. A.; Lee D. D. C60 and Water-Soluble Derivatives as Antioxidants Against Radical-Initiated Lipid Peroxidation. J. Med. Chem; 1999, 42, pp 4614-4620. https://doi.org/10.1021/jm990144s
44. Xie Q.; Perez–Cordero E.; Echegoyen L. Electrochemical Detection of C60 and C70 Enhanced Stability of Fullerides in Solution . Am. Chem. Soc; 1992, 114, pp 3978–3980. https://doi.org/10.1021/ja00036a056

Published

2019-12-25

How to Cite

Histological features of rat muscle fibers under conditions of ischemia and used C60 fullerenes as antioxidants. (2019). Notes in Current Biology, 4(388). https://doi.org/10.29038/2617-4723-2019-388-4-125-145