Temporal dynamics of the invertebrates species of the tehnosols within Nikopol manganese ore basin

Authors

DOI:

https://doi.org/10.29038/2617-4723-2019-388-4-83-104

Keywords:

invertebrates, reclamation, groups, populations, ecological niche, edaphic factors, environmental conditions

Abstract

The article presents the results of the study of the dynamics of species of terrestrial invertebrates within the time gradient of the tehnosols within Nikopol manganese ore basin. Research conducted at the Research Center Dnieper State Agricultural and Economic University (Pokrov city, Ukraine) during 2013-2015. Sampling was done on anthropogenic versions of soils (technosols), which are formed on loesses-like loam to red-brown clay, in gray-green clay on the technological mix of rock and loam on loesses-like loam with humus-rich layer of the soil top. To investigate the spatial and temporal variability of abundance, species richness and species composition of invertebrate communities within experimental test site, the animals were collected with the use of traps Barbera. The seven taxonomic groups of invertebrates were investigated which are closely related to the soil and land environment vegetation: (1) clams (Mollusca: Gastropoda), (2) spiders (Chelicerata: Arachnida), (3) dvoparnonohi (Myriapoda: Diplopoda), (4) centipede (Myriapoda: Chilopoda ), (5) woodlice (Malacostraca: Isopoda: Oniscidea); (6) insects (Tracheata: Isecta). It was found that the dynamics of the time during the growing season number greatest number of species of invertebrates land reclamation describes asymmetric bimodal model (model VII from the list HOFJO). Bimodalnist biotic stresses the importance of (competitive) interactions between species. Bimodal may be due to biological heterogeneity of the population and the resulting migration. The established types of temporal dynamics of invertebrates indicate the presence of complex and existing processes regulate the number of animals at the relatively young environmental entities, which are tehnosols. On the temporal dynamics of species of invertebrates structured in space and time are characterized by the presence of regular patterns on which the phenology, the following groups of animals: spring, summer, autumn, summer and autumn. Herbivores prevail among the summer-autumn forms of zoofagous - among autumn, and less of spring or summer. Reviewed summer gradient forms in time often described symmetric model V. The summer-autumn forms are characterized by feedback at the time, which can be described models of V, VI and VII. Spring forms often have a distribution model that best describes II and III.

References

1. Austin, M.P. A silent clash of paradigms: some inconsistencies in community ecology. Oikos; 1999, 86(1), 170–178. DOI: 10.2307/3546582
2. Bonato, L.; Minelli, A.; Lopresti, M. ChiloKey, an interactive identification tool for the geophilomorph centipedes of Europe (Chilopoda, Geophilomorpha). ZooKeys; 2014, 443, 1–9.
3. Borcard, D.; Legendre, P.’ Avois–Jacquet, C.; Tuosimoto, H. Dissecting the spatial structure of ecological data at multiple scales. Ecology; 2004, 85, 1826–1832.
4. Brandle, M.; Durka, W.; Krug, H., Brandl, R. The assembly of local communities: plants and birds in non-reclaimed mining sites. Ecography; 2003, 26, 652–660. DOI: 10.1034/j.1600-0587.2003.03513.x
5. Brown, J.H. Macroecology: progress and prospect. Oikos, 2003, 87, 3–14. DOI: 10.2307/3546991
6. Buchori, D.; Rizali, A.; Rahayu, G.A.; Mansur, I. Insect diversity in postmining areas: Investigating their potential role as bioindicator of reclamation success. Biodiversitas; 2018, 19, 1696–1702. DOI: 10.13057/biodiv/d190515
7. Chase, J. M.; Myers, J. A. Disentangling the importance of ecological niches from stochastic processes across scales. Philosophical Transactions of the Royal
Society B: Biological Sciences; 2011, 366, 2351–2363. https://doi.org/10.1098/rstb.2011.0063
8. Cherny, N.G.; Golovach, S.I. Millipedes of the plain territories of Ukraine. Kiev. 1993.
9. Colwell, R.K.; Futuyma, D.J. Measurement of niche breadth and overlap. Ecology; 1971, 52, 567–576. DOI: 10.2307/1934144
10.Desender, K.; Ervinck, A.; Tack, G. Beetle diversity and historical ecology of woodlands in Flanders. Belgian Journal of Zoology;.1999, 129(1), 139–155.
11.Devictor, V.; Clavel, J.; Julliard, R.; Lavergne, S.; Mouillot, D.; Thuiller, W.; Venail, P.; Villéger, S.; Mouquet, N. Defining and measuring ecological specialization. Journal of Applied Ecology; 2010, 47, 15–25. doi:10.1111/j.1365-2664.2009.01744.x
12.Dunger, W.; Wanner, M.; Hauser, H.; Hohberg, K.; Schulz, H.-J.; Schwalbe, T.; Seifert, B.; Vogel, J.; Voigtländer, K.; Zimdars, B.; Zulka, K.P. Development of soil fauna at mine sites during 46 years after afforestation. Pedobiologia; 2001, 45(3), 243-271. https://doi.org/10.1078/0031-4056-00083.
13.Elton, C. Animal Ecology. Sidgwick and Jackson, London. 1927.
14.Entling, W.; Schmidt, M. H.; Bacher, S.; Brandl, R.; Nentwig, W. Niche properties of Central European spiders: shading, moisture and the evolution of the habitat niche. Global Ecology and Biogeography; 2007, 16, 440–448. doi:10.1111/j.1466-8238.2006.00305.x
15.Gaston, K.J.; Blackburn, T.M.; Lawton, J.H. Interspecific abundance-range size relationships: an appraisal of mechanisms. Journal of Animal Ecology, 1997, 66(44), 579–601. DOI: 10.2307/5951
16.Ge B.; Daizhen, Z.; Jun, C.; Huabin, Z.; Chunlin, Z.; Boping, T. Biodiversity Variations of Soil Macrofauna Communitiesin Forestsina Reclaimed Coastwith Different Diked History. Pakistan Journal of Zoology; 2014, 46(4). 1053–1059.
17.Gregory, R.D.; Gaston, K.J. Explanations of commonness and rarity in British breeding birds: separating resource use and resource availability. Oikos; 2000, 88, 515–526. https://doi.org/10.1034/j.1600-0706.2000.880307.x
18.Grinnell, J. The niche relationship of the California Thrasher. The Auk: Ornithological Advances; 1917. 34(4), 427–433. https://doi.org/10.2307/4072271
19.Gural-Sverlova, N. V.; Gural, R.I. Identification book of the terrestrial molluscs of Ukraine. Lviv. 2012.
20.Hedde, M.; Nahmani, J.; Séré, G.; Auclerc, A.; Cortet J. Early colonisation of constructed technosols by macro-invertebrates. Journal of Soils and Sediments; 2018, 19(8), 3193–3203. https://doi.org/10.1007/s11368-018-2142-9
21.Hendrychova, M. Reclamation success in post-mining landscapes in the Czech Republic: a review of pedological and biological studies. Journal of Landscape Studies; 2008, 1, 63–78.
22.Hendrychova, M.; Salek, M.; Tajovsky, K.; Reho, M. Soil properties and species richness of invertebrates on afforested sites after brown coal mining. Restoration Ecology; 2011, 20 (5), 561–567. https://doi.org/10.1111/j.1526-100X.2011.00841.x
23.Hildmann, E.; Wunsche, M. Lignite mining and its after-effects on the central German landscape. Water, Air and Soil Pollution; 1996, (91), 79–87. DOI https://doi.org/10.1007/BF00280924
24.Hodecek, J.; Kuras, T.; Sipos, J.; Dolny, A. Post-industrial areas as successional habitats: long-term changes of functional diversity in beetle communities. Basic and Applied Ecology, 2015. 16(7), 629–640. https://doi.org/10.1016/j.baae.2015.06.004
25.Hodecek, J.; Kuras, T.; Sipos, J.; Dolny, A. Role of reclamation in the formation of functional structure of beetle communities: A different approach to restoration. Ecological Engineering; 2016, 94, 537–544. https://doi.org/10.1016/j.ecoleng.2016.06.027
26.Hutchinson, G. E. Concluding remarks. Cold Spring Harbour Symposium on Quantitative Biology; 1957, 22, 415–427. http://dx.doi.org/10.1101/SQB.1957.022.01.039
27. Identification key to the insects of the European part of the USSR in five volumes (edited by Corresponding Member of the USSR Academy of Sciences G.Ya.Bey-Bienko). Volume 2. Beetles and Strepsiptera. Volume Editors: EL Guriev and OL Kryzhanovsky. ("Identification keys to the fauna of the USSR Academy of Sciences of the USSR published by the Zoological Institute", vol. 89) Publishing House "Science". Moscow - Leningrad. 1965.
28.Jansen, F.; Oksanen, J. How to model species responses along ecological gradients – Huisman–Olff–Fresco models revisited. Journal of Vegetation Science; 2013, 24, 1108–1117. https://doi.org/10.1111/jvs.12050
29.Kędzior, R. Co-occurrence pattern of ground beetle (Coleoptera, Carabidae) indicates the quality of restoration practices in postindustrial areas. Applied Ecology and Environmental Research; 2018; 16(6), 7913–7924. DOI: http://dx.doi.org/10.15666/aeer/1606_79137924
30.Kielhorn, K.H.; Keplin, B.; Hüttl, R.F. Ground beetle communities on reclaimed mine spoil: Effects of organic matter application and revegetation. Plant and Soil; 1999, 213(1–2), 117–125. https://doi.org/10.1023/A:1004508317091
31.Klimkina, I.; Kharytonov, M.; Zhukov, O. Trend Analysis of Water-Soluble Salts Vertical Migration in Technogenic Edaphotops of Reclaimed Mine Dumps in Western Donbass (Ukraine). Journal of Environmental Research, Engineering and Management; 2018, 74 (2), 82–93. http://dx.doi.org/10.5755/j01.erem.74.2.19940
32.Kohn, A. J. Microhabitats, abundance, and food of Conus in the Maldive and Chagos Islands. Ecology; 1968, 49, 1046–1061. https://doi.org/10.2307/1934489
33.Kunah, O. M.; Zelenko, Y. V.; Fedushko, M. P.; Babchenko, A. V.; Sirovatko, V. O.; & Zhukov, O. V. The temporal dynamics of readily available soil moisture for plants in the technosols of the Nikopol Manganese Ore Basin. Biosystems Diversity; 2019, 27(2), 156–162. doi:10.15421/011921
34.Lawton, J.H. Are there general laws in ecology? ; 1999, 84, 177–192. DOI: 10.2307/3546712
35.Michaelis J.; Diekmann, M.R. Biased niches – Species response curves and niche attributes from Huisman-Olff-Fresco models change with differing species prevalence and frequency. PLoS ONE; 2017, 12(8), e0183152.https://doi.org/10.1371/journal.pone.0183152
36.Okie, J. G.; Van Horn, D. J.; Storch, D.; Barrett, J. E.; Gooseff, M. N.; Kopsova, L.; & Takacs-Vesbach, C. D. Niche and metabolic principles explain patterns of diversity and distribution: theory and a case study with soil bacterial communities. Philosophical Transactions of the Royal Society B: Biological Sciences; 2015, 282, 20142630. http://dx.doi.org/10.1098/rspb.2014.2630
37.Oksanen, J.; Blanchet, F. G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; Stevens, M. H. H.; Wagner, H. Community Ecology Package. R package version 2.5-2; 2018, https://CRAN.Rproject.org/package=vegan
38.Pontegnie, M.; du Bus de Warnaffe, G.; Lebruna, Ph. Impacts of silvicultural practices on the structure of hemi-edaphic macrofauna community. Pedobiologia; 2005, 49(3), 199–210. DOI: 10.1016/j.pedobi.2004.09.005
39.Rehor, M.; Lang, T.; Eis, M. Application of new methods in solving current reclamation issues of Severoceske doly, a.s. localities. World of Surface Mining; 2006, 6, 383–386.
40.Schoener, T. W. Resource partitioning in ecological communities. Science; 1974, 185(4145), 27–39.
41.Sklenicka, P.; Prikryl, I.; Svoboda, I.; Lhota, T. Non-productive principles of landscape rehabilitation after long-term opencast mining in north-west Bohemia. Journal of the South African Institute of Mining and Metallurgy; 2004, 104, 83–88.
42.Soberon, J. Grinnellian and Eltonian niches and geographic distributions of species. Ecology Letters; 2007, 10(12), 1115–1123. https://doi.org/10.1111/j.1461-
0248.2007.01107.x
43.Szczepanska, J.; Twardowska, I. Distribution and environmental impact of coal-mining wastes in Upper Silesia Poland. Environmental Geology; 1999, 38, 249–258. DOI https://doi.org/10.1007/s002540050422
44.Tarjuelo, R.; Morales, M. B.; Arroyo, B.; Mañosa, S.; Bota, G.; Casas, F.; Traba, J. Intraspecific and interspecific competition induces density-dependent habitat niche shifts in an endangered steppe bird. Ecology and evolution; 2017, 7(22), 9720–9730. doi:10.1002/ece3.3444
45.Yorkina, N.; Maslikova, K.; Kunah, O.; Zhukov, O. Analysis of the spatial organization of Vallonia pulchella (Muller, 1774) ecological niche in Technosols (Nikopol manganese ore basin, Ukraine). Ecologica Montenegrina; 2018, 17, 29–45.
46.Zalesskaya N. T. Identification key of centipedes USSR. Moscow, Nauka. 1978.
47.Zalesskaya, N. T.; Shileiko, A. A. Scolopendra centipedes. Moscow, Nauka. 1991.
48.Zhenqi, H.; Peijun, W.; Jing, L. Ecological Restoration of Abandoned Mine Land in China. Journal of Resources and Ecology; 2012, 3(4), 289–296. DOI:10.5814/j.issn.1674-764x.2012.04.001
49.Zhukov O.V.; Zadorozhna, G.O.; Maslikova K.P.; Andrusevych K.V.; Lyadskaya I.V. Tehnosols Ecology, Dnipro: Zhurfond. 2017.
50.Zhukov, O. V.; Maslikova, K. P. The dependence of the technosols models functional properties from the primary stratigraphy designs. Journal of Geology, Geography and Geoecology; 2018, 27(2), 399–407. doi:10.15421/111864

Published

2019-12-24

How to Cite

Babchenko, A. (2019). Temporal dynamics of the invertebrates species of the tehnosols within Nikopol manganese ore basin. Notes in Current Biology, (4(388). https://doi.org/10.29038/2617-4723-2019-388-4-83-104