The Characteristic of the Main Ischemic Damaging Biomarkers of Muscle Tissue

Authors

DOI:

https://doi.org/10.29038/2617-4723-2019-387-162-172

Keywords:

ischemia, natriuretic peptide, cardiac troponins, h-FABP, creatine kinase-MB, growth factors, Galectin-3, AMP-activated protein kinase

Abstract

The ischemia forms the basis of pathogenetic mechanisms acute and chronic heart diseases and blood vessels diseases. Ischemic heart disease causes the highest mortality. The activation a number of kinases playes an important role in establishing complex cells interconnections to achieve biological effects in the response to ischemic injury. Various protein nature factors are synthesized and isolated in the bloodstream owing to reactions cascade induced by kinases. The most studied are natriuretic peptides, cardiac troponins, and various growth factors. They are used as diagnostic markers of myocardial damage. The most accurate markers are natriuretic peptides and cardiac troponins. In particular, natriuretic peptides depress the renin-angiotensin and sympatho-adrenal system, and also have diuretic effects. Cardiac troponins are isolated exclusively from the myocardium. They are contained in structural and cytosolic pools. They play an important role in reducing Ca2 + sensitivity of force development. There is a number of less studied and significant protein factors that are released during ischemia. Due to its specificity, heart-fatty acid binding protein is the earliest diagnostic marker of myocardial ischemic injury. Creatine Kinase-MB has negative effects during excessive physical activity due to high interstitial fluid permeability. Stimulating growth factor is closely related to interleukin-33, which provides cardioprotective effect. The growth-differentiation factor-15 (GDF-15) is synthesized on the myocardium cell membranes surface in response to ischemia-reperfusion. It is involved in the processes of myocardial recovery and fibrosis. The vascular endothelial growth factor stimulates the cellular response by binding to the appropriate receptors on the cellular muscle fiber membrane, in the sarcoplasm and the nuclear membranes of the ischemic muscle. Altogether with GDF-15, it protects the heart from ischemia-reperfusion injury by the signaling kinase path PI3K-Akt. Today the Fibroblast Growth Factor 23 is considered as a new risk factor for cardiovascular disease. It`s high level may be mediated by left ventricular hypertrophy. Galectin-3 transduces extracellular signal and participates in the processes of acute inflammatory reactions, cardiomyocytes repair, regulation of the apoptosis intensity. The AMP-activated protein kinase is an important regulator of the cellular response pathways in the energy stress conditions. It affects the degree of glucose absorption and glycolysis process. Nowadays, it is important to use a marker complexes for more accurate diagnosis of ischemic damage. The concentration of these protein factors increases in the first hours of damage and depends on damage severity. Some of the protein factors are not specific to the heart tissue and have an effect on skeletal muscle. The systematization of literary data allows us to understand the main links in the mechanism of these factors and what effect they have on the ischemic tissue. The revealed features will be relevant for further research of protein factors effects on the parameters of muscle contraction.

References

1. Lloyd-Jones, D. M.; Adams, R. J.; Brown, T. M.; et al. Executive summary: heart disease and stroke statistics – 2010 update: a report from the American Heart Association. Circulation; 2010, 121, pp 948–954. doi: 10.1161/CIRCULATIONAHA.109.1926.
2. Roger, V. L.; Go, A. S.; Lloyd-Jones, D. M.; et al. Executive summary: heart disease and stroke statistics – 2012 update: a report from the American Heart Association. Circulation; 2012, 125, pp 188–197.doi: 10.1161/CIR.0b013e3182456d46.
3. Handziuk, V. A. Analiz zakhvoriuvanosti na ishemichnu khvorobu sertsia v Ukraini [Analysis of ischemic heart disease morbidity in Ukraine]. Ukrainskyi kardiolohichnyi zhurnal; 2014, 3, c 45–52. (in Ukrainian)
4. Zannad, F.; Agrinier, N.; Alla F. Heart failure burden and therapy. EP Europace; 2009, 11 (5), pp 51–59. doi:10.1093/europace/eup304.
5. Murdock, M.; Murdoch, M. M. Compartment syndrome: a review of the literature. Clinics in podiatric medicine and surgery; 2012, 29 (2), pp 301–310. doi: 10.1016/j.cpm.2012.02.001.
6. Turóczi, Z.; Arányi, P.; Lukáts, Á.; Garbaisz, D.; Lotz, G.; Harsányi, L.; Szijártó, A. Muscle fiber viability, a novel method for the fast detection of ischemic muscle injury in rats. PLoS One; 2014, 9 (1), pp e84783. doi: 10.1371/journal. pone.0084783.
7. Shury`gina, I. A.; Shury`gin, M. G. Izmenenie aktivnosti vnutrikletochny`kh signal`ny`kh kaskadov pri ishemii [Alteration of intracellular signal cascades activity at ischemia]. Mezhdunarodny`j zhurnal prikladny`kh i fundamental`ny`kh issledovanij; 2016, 10, s 567–571. (in Russian)
8. Erkut, B.; Özyazıcıoğlu, A.; Karapolat, B. S.; Koçoğulları C. U.; Keles S.; Ateş A.; Gundogdu C.; Kocak H. Effects of ascorbic acid, alpha-tocopherol and allopurinol on ischemia-reperfusion injury in rabbit skeletal muscle: an experimental study. Drug target insights; 2007, 2, pp 2489–258. https://doi.org/10.4137/dti.s303
9. Zai, S. Yu.; Zavodovskyi, D. O.; Bohutska, K. I.; Nozdrenko, D. M.; Prylutskyi, Yu. I. Perspektyvy zastosuvannia S60-fulerenu yak zasobu profilaktyky i korektsii ishemichno-reper-fuziinykh porushen u skeletnii miazovii tkanyni [Prospects of C60 fullerene application as a mean of prevention and correction of ischemic-reperfusion injury in the skeletal muscle tissue]. Fiziolo-hichnyi zhurnal; 2016, 62 (3), s 66–77. (in Ukrainian)
10. Tidball J. G. Mechanisms of muscle injury, repair, and regeneration. Comprehensive Physiology; 2011, 1 (4), pp 2029–2062. doi: 10.1002/cphy.c100092.
11. Rácz, I. B.; Illyés, G.; Sarkadi, L.; Hamar, J. The functional and morphological damage of ischemic reperfused skeletal muscle. European Surgical Research; 1997, 29 (4), pp :254–263. doi: 10.1159/000129531.
12. Dorn, G. W.; Force T. Protein kinase cascades in the regulation of cardiac hypertrophy. The Journal of Clinical Investigation; 2005, 115 (3), pp 527–537. doi: 10.1172/JCI200524178.
13. Mokhort, M. A., Kutovyi, Yu. M. Prekondytsiiuvannia miokarda (ohliad literatury) [Preconditioning of the myocardium (review of literature). Zhurnal Natsionalnoi akademii medychnykh nauk Ukrainy; 2014, 20 (2), c 160–171. (in Ukrainian)
14. Lupanov, V. P.; Maksimenko, A. V. Protek-tivnaya ishemiya v kardiologii. Formy` kondiczio-nirovaniya miokarda [Protective ischemia in cardiology. Myocardial conditioning forms]. Kardiovaskulyarnaya terapiya i profilaktika; 2011, 10 (1), c 96–103. (in Russian)
15. Testai, L.; Martelli, A.; Marino, A.; D'Antongiovanni, V.; Ciregia, F.; Giusti ,L.; Lucacchini, A.; Chericoni, S.; Breschi, M. C.; Calderone, V. The activation of mitochondrial BK potassium channels contributes to the protective effects of naringenin against myocardial ischemia/reperfusion injury. Biochemical pharmacology; 2013, 85 (11), pp 1634–1643. doi: 10.1016/j.bcp.2013.03.018.
16. Granfeldt, A.; Lefer, D. J.; Vinten-Johansen, J. Protective ischaemia in patients: preconditioning and postconditioning. Cardiovascular Research; 2009, 83 (2), pp 234–246. doi: 10.1093/cvr/cvp129.
17. Pearson, G.; Robinson, F.; Beers Gibson, T.; Xu, B.; Karandikar, M.; Berman, K.; Cobb, H., M. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocrine reviews; 2001, 22 (2), pp 153–183. doi: 10.1210/edrv.22.2.0428.
18. Luchner, A.; Stevens, T. L.; Borgeson, D. D.; Redfield, M.; Wei, C. M.; Porter, J. G.; Burnett, J. C. Jr. Differential atrial and ventricular expression of myocardial BNP during evolution of heart failure. The American journal of physiology; 1998, 274 (5), pp 1684–1698. doi: 10.1152/ajpheart.1998.274. 5.H1684.
19. Besaha, Ye. M. Vyznachennia vmistu natriiuretychnykh peptydiv u plazmi krovi yak diahnostychnyi ta prohnostychnyi marker pry sertsevii nedostatnosti [The determination of natriuretic peptides in blood plasma as a diagnostic and prognostic marker in heart failure]. Aktualni diahnostychni pidkhody; 2009, 1. c 12–17. (in Ukrainian)
20. Foote, R. S.; Pearlman, J. D.; Siegel, A. H.; Yeo, K. T. Detection of exercise-induced ischemia by changes in B-type natriuretic peptides. Journal of the American college of cardiology; 2004, 44 (10), pp 1980–1987. doi: 10.1016/j.jacc.2004.08.045.
21. Maisel, A. S.; Krishnaswamy, P.; Nowak, R. M.; et al. Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. The New England journal of medicine; 2002, 347 (3), pp 161–167. doi: 10.1056/NEJMoa020233.
22. Savarese, G.; Musella, F.; D'Amore, C.; Vassallo, E.; Losco, T.; Gambardella, F.; Cecere, M.; Petraglia, L.; Pagano, G.; Fimiani, L.; Rengo, G.; Leosco, D.; Trimarco, B.; Perrone-Filardi, P. Changes of natriuretic peptides predict hospital admissions in patients with chronic heart failure: a meta-analysis. JACC: heart failure; 2014, 2 (2), pp 148–158. doi: 10.1016/j.jchf.2013.11.007.
23. Savarese, G.; Trimarco, B.; Dellegrottaglie, S.; Prastaro, M.; Gambardella, F.; Rengo, G.; Leosco, D.; Perrone-Filardi, P. Natriuretic peptide-guided therapy in chronic heart failure: a meta-analysis of 2,686 patients in 12 randomized trials. PLoS One; 2013, 8 (3), pp 58287. https://doi.org/10.1371/journal.pone.0058287
24. Apple, F. S.; Jesse, R. L.; Newby, L. K.; et al. National Academy of clinical biochemistry and IFCC Committee for standardization of markers of cardiac damage laboratory medicine practice guidelines: analytical issues for biochemical markers of acute coronary syndromes. Clinical chemistry; 2007, 53 (4), pp 547–551. doi: 10.1373/clinchem.2006. 084715. https://doi.org/10.1161/circulationaha.107.182881
25. Doroshenko, O. V. Znachennia pidvyshchenoho troponinu u klinichnii praktytsi [The value of increased troponin in clinical practice]. Problemy ekolohichnoi ta medychnoi henetyky i klinichnoi imunolohii; 2013, 3, c 111–121. (in Ukrainian)
26. Khaniukov, O. O.; Sapozhnychenko, L. V. Mistse biomarkeriv u diahnostytsi, stratyfikatsii ryzyku ta prohnozuvanni sertsevoi nedostatnosti [Role of biomarkers in diagnostics, stratification of risk and prognosis of heart failure]. Medychni perspektyvy; 2018, 23 (2), c 56–63. doi: 10.26641/2307-0404.2018.2(part1).129517. (in Ukrainian)
27. Janota, T. Biochemical markers in the diagnosis of myocardial infarction. Cos et vasa; 2014, 56 (4), pp 304–310. doi: 10.1016/j.crvasa.2014.06.007.
28. Alehagen. U.; Dahlström. U.; Rehfeld, J. F.; Goetze J. P. Prognostic assessment of elderly patients with symptoms of heart failure by combining high-sensitivity troponin T and N-terminal pro-B-type natriuretic peptide measurements. Clinical chemistry; 2010, 56 (11), pp 1718–1724. doi: 10.1373/clinchem. 2009.141341.
29. Latini. R.; Masson, S.; Anand, I. S.; Missov, E.; Carlson, M.; Vago. T.; Angelici. L.; Barlera. S.; Parrinello. G.; Maggioni, A. P.; Tognoni. G.; Cohn, J. N. Prognostic value of very low plasma concentrations of troponin T in patients with stable chronic heart failure. Circulation; 2007, 116 (11), pp 1242–1249. doi: 10.1161/CIRCULATIONAHA. 106.655076.
30. Gomes, A. V.; Potter, J. D.; Szczesna-Cordary D. The role of troponins in muscle contraction. IUBMB Life; 2002, 54 (6) pp 323–333. doi: 10.1080/15216540. https://doi.org/10.1080/15216540216037
31. Gerhardt, W.; Katus, H.; Ravkilde, J.; Hamm, C.; Jørgensen, P. J.; Peheim, E.; Ljungdahl, L.; Löfdahl, P. S-troponin T in suspected ischemic myocardial injury compared with mass and catalytic concentrations of S-creatine kinase isoenzyme MB. Clinical chemistry; 1991, 37 (8), pp 1405–1411.
32. Thygesen, K.; Mair, J.; Katus, H.; Plebani, M.; Venge, P.; Collinson, P.; Lindahl, B.; Giannitsis. E.; Hasin, Y.; Galvani, M.; Tubaro, M.; Alpert, J. S.; Biasucci, L. M.; Koenig, W.; Mueller, C.; Huber, K.; Hamm, C.; Jaffe, A. S. Recommendations for the use of cardiac troponin measurement in acute cardiac care. European heart journal; 2010, 31 (18), pp 2197–2206. doi: 10.1093/eurheartj/ehq251.
33. White, H. D. Pathobiology of troponin elevations: do elevations occur with myocardial ischemia as well as necrosis? Journal of the American college of cardiology; 2011, 57 (24), pp 2406–2408. doi:10.1016/j.jacc.2011.01.029.
34. Masson, S.; Anand, I.; Favero, C.; Barlera, S.; Vago, T.; Bertocchi, F.; Maggioni, A. P.; Tavazzi, L.; Tognoni, G.; Cohn, J. N.; Latini, R. Serial measurement of cardiac troponin T using a highly sensitive assay in patients with chronic heart failure: data from 2 large randomized clinical trials. Circulation; 2012, 125 (2), pp 280–288. doi: 10.1161/CIRCULATIONAHA. 111.044149.
35. Charpentier, S.; Maupas-Schwalm, F.; Cournot, M.; Elbaz. M.; Ducassé, J. L.; Bottela, J. M.; Lauque, D. Diagnostic accuracy of quantitative heart-fatty acid binding protein assays compared with Cardiodetect(®) in the early detection of acute coronary syndrome. Archives of cardiovascular disease; 2011, 104 (10), pp 524–529. doi: 10.1016/ j.acvd.2011.07.002.
36. Seino, Y.; Tomita, Y.; Takano, T.; Ohbayashi, K. Office cardiologists cooperative study on whole blood rapid panel tests in patients with suspicious acute myocardial infarction: comparison between heart-type fatty acid-binding protein and troponin T tests. Circulation journal; 2004, 68 (2), pp 144–148. https://doi.org/10.1253/circj.68.144
37. Rosman, J.; Kavala, G.; Obunai, K.; Bergmann S. R. The role of heart-type fatty acid-binding protein in the diagnosis of acute coronary syndrome. International journal of angiology; 2009, 18 (2), pp 79–81. https://doi.org/10.1055/s-0031-1278331
38. Jaffe, A. S.; Babuin, L.; Apple, F. S. Biomarkers in acute cardiac disease: the present and the future. Journal of the American college of cardiology; 2006, 48 (1), pp 1–11. doi: 10.1016/j.jacc.2006.02.056.
39. Nigam. P. K. Biochemical markers of myocardial injury. Indian journal of clinical biochemistry; 2007, 22 (1) pp 10–17. doi: 10.1007/BF02912874.
40. Brancaccio, P.; Maffulli, N.; Limongelli, F. M. Creatine kinase monitoring in sport medicine. British medical bulletin; 2007, 81–82, pp 209–230. doi: 10.1093/bmb/ldm014.
41. Meijers, W. C.; van der Velde, A. R.; de Boer, R. A. ST2 and Galectin-3: Ready for prime time? The journal of International Federation of clinical chemistry and laboratory medicine; 2016, 27 (3), pp 238–252.
42. Felker, G. M.; Fiuzat, M.; Thompson, V.; Shaw, L. K.; Neely, M. L.; Adams, K. F.; Whellan, D. J.; Donahue, M. P.; Ahmad, T.; Kitzman, D. W.; Piña, I. L.; Zannad, F.; Kraus, W. E.; O'Connor, C. M. Soluble ST2 in ambulatory patients with heart failure: association with functional capacity and long-term outcomes. Circulation. Heart failure; 2013, 6 (6), pp 1172–1179. doi: 10.1161/CIRCHEAR TFAILURE.113.000207.
43. Kempf, T.; Björklund, E.; Olofsson, S.; Lindahl, B.; Allhoff, T.; Peter, T.; Tongers, J.; Wollert, K. C.; Wallentin, L. Growth-differentiation factor-15 improves risk stratification in ST-segment elevation myocardial infarction. European heart journal; 2007, 28 (23), pp 2858–2865. doi:10.1093/eurheartj/ehm465.
44. Annes, J. P.; Munger, J. S.; Rifkin, D. B. Making sense of latent TGFbeta activation. Journal of cell science; 2003, 116 (2), pp 217–224. doi: 10.1242/jcs.00229. 45. Kempf, T.; Eden, M.; Strelau, J.; Naguib, M.; Willenbockel, C.; Tongers, J.; Heineke, J.; Kotlarz, D.; Xu, J.; Molkentin, J. D.; Niessen, H. W.; Drexler, H.; Wollert, K. C. The transforming growth factor-beta superfamily member growth-differentiation factor-15 protects the heart from ischemia/reperfusion injury. Circulation research; 2006, 98 (3), pp 351–360. doi: 10.1161/01.RES.0000202805.73038.48.
46. Dimmeler, S.; Zeiher, A. M. Akt takes center stage in angiogenesis signaling. Circulation research; 2000, 86 (1), pp 4–5. https://doi.org/10.1161/01.res.86.1.4
47. Cheng, Y.; Jiang, S.; Hu, R.; Lv, L. Potential mechanism for endothelial progenitor cell therapy in acute myocardial infarction: activation of VEGFPI3K/Akt-eNOS pathway. Annals of clinical and laboratory science; 2013, 43 (4), pp 395–401.
48. Syvolap, V. D.; Zemlianyi, Ya. V. Prohnostychne znachennia rivniv GDF 15 i NTproBNP ta ekhokardiohrafichnykh pokaznykiv u khvorykh na sertsevu nedostatnist zi zberezhenoiu fraktsiieiu vykydu ta bezsymptomnu diastolichnu dysfunktsiiu, yaki perenesly infarkt miokarda na tli arterialnoi hipertenzii [Prognostic signifi cance of GDF 15 and NTproBNP levels and echocardiographic parameters in patients with heart failure with preserved ejection fraction and asymptomatic diastolic dysfunction after myocardial infarction on the background of arterial hypertension]. Zaporozhskyi medytsynskyi zhurnal; 2014, 3 (84), c 13–17. (in Ukrainian) https://doi.org/10.14739/2310-1210.2014.3.25596
49. Shkuropat, V. M. Vplyv autotransplantatsii aspirata kistkovoho mozku na riven ekspresii VEGF v ishemizovanomu miazi ta kontsentratsiiu VEGF u krovi khvorykh z khronichnoiu ishemiieiu nyzhnoi kintsivky III stupenia u riznykh vikovykh hrupakh [Influence of autotransplantation of bone marrow aspirate on VEGF expression level in the ischemic muscle and VEGF concentration in blood of patients with chronic lower limb ischemia of the III degree in different age groups]. Morfolohiia; 2009, 3 (4), c 93–101. (in Ukrainian)
50. Mohylnytska, L. A. Vaskuloendotelialnyi faktor rostu ta endoteiliizalezhna dylatatsiia u khvorykh z dytynstva na tsukrovyi diabet 1 typu z mikroanhiopatiiamy ta v osib molodoho viku z ozhyrinniam [Vascular endothelial growth factor and endothelium-dependent dilatation in childhood-onset type 1 diabetic patient with microangiopathy and obese adolescents]. Klinichna endokrynolohiia ta endokrynna khirurhiia; 2015, 3 (51), c 23–29. (in Ukrainian) https://doi.org/10.24026/1818-1384.3(51).2015.75062
51. Shury`gin, M. G.; Shury`gina, I. A.; Dremina, N. N. Vliyanie faktora rosta e`ndoteliya sosudov na uroven` kollagenoobrazovaniya v proczesse razvitiya postinfarktnogo kardioskleroza [Influence of vasoendothelial growth factor on the level of collagen formation in the process of postinfarction cardiosclerosis]. Sibirskij mediczinskij zhurnal; 2008, 3, c 53–55. (in Russian)
52. Gutiérrez, O. M.; Mannstadt, M.; Isakova, T.; Rauh-Hain, J. A.; Tamez, H.; Shah, A.; Smith, K.; Lee, H.; Thadhani, R.; Jüppner, H.; Wolf, M. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. The New England journal of medicine; 2008, 359 (6), pp 584–592. doi: 10.1056/NEJMoa0706130.
53. Smith, K.; deFilippi, C.; Isakova, T.; Gutiérrez, O. M.; Laliberte, K.; Seliger, S.; Kelley, W.; Duh, Sh.-H.; Hise, M.; Christenson, R.; Wolf, M.; Januzzi, J. Fibroblast Growth Factor 23, High-Sensitivity Cardiac Troponin, and Left Ventricular Hypertrophy in CKD. American journal of kidney diseases; 2013, 61 (1), pp 67–73. doi: 10.1053/j.ajkd.2012.06.022.
54. Kendrick. J.; Cheung, A. K.; Kaufman, J. S.; Greene, T.; Roberts, W. L.; Smits, G.; Chonchol, M. FGF-23 associates with death, cardiovascular events, and initiation of chronic dialysis. Journal of the American society of nephrology; 2011, 22 (10), pp 1913–1922. doi: 10.1681/ASN.2010121224.
55. Amin, H. Z.; Amin, L. Z.; Wijaya, I. P. Galectin-3: a novel biomarker for the prognosis of heart failure. Clujul Medical; 2017, 90 (2), pp 129–132. doi: 10.15386/cjmed-751.
56. Lopez-Andrès, N.; Rossignol, P.; Iraqi, W.; Fay, R.; Nuée, J.; Ghio, S.; Cleland, J. G.; Zannad, F.; Lacolley, P. Association of galectin-3 and fibrosis markers with long-term cardiovascular outcomes in patients with heart failure, left ventricular dysfunction, and dyssynchrony: insights from the CARE-HF (cardiac resynchronization in heart failure) trial. European journal of heart failure; 2012, 14 (1), pp 74–81. doi: 10.1093/eurjhf/hfr151.
57. van der Velde, A. R.; Gullestad, L.; Ueland, T.; Aukrust, P.; Guo, Y.; Adourian, A.; Muntendam, P.; van Veldhuisen, D. J.; de Boer, R. A. Prognostic value of changes in galectin-3 levels over time in patients with heart failure: data from CORONA and COACH. Circulation. Heart failure; 2013, 6 (2), pp 219–226. doi: 10.1161/CIRCHEARTFAILURE.112. 000129.
58. Russell, R. R.; Bergeron. R.; Shulman, G. I.; Young, L. H. Translocation of myocardial GLUT-4 and increased glucose uptake through activation of AMPK by AICAR. The American journal of physiology; 1999, 277 (2), pp 643–649. doi: 10.1152/ajpheart. 1999.277.2.H643.
59. Russell ,R. R.; Li J.; Coven, D. L.; Pypaert, M.; Zechner, C.; Palmeri. M.; Giordano, F. J.; Mu, J.; Birnbaum, M. J.; Young, L. H. AMP-activated protein kinase
mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury. Journal of Clinical Investigation; 2004, 114 (4), pp 495–503. doi: 10.1172/JCI19297.
60. Mu, J.; Brozinick, J. T. Jr.; Valladares, O.; Bucan, M.; Birnbaum, M. J. A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle. Molecular Cell; 2001, 7 (5), pp 1085–1094. https://doi.org/10.1016/s1097-2765(01)00251-9
61. Marsin, A. S.; Bertrand, L.; Rider, M. H.; Deprez, J.; Beauloye, C.; Vincent, M. F.; Van den Berghe, G.; Carling, D.; Hue L. Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Current Biology; 2000, 10 (20), pp 1247–1255. https://doi.org/10.1016/s0960-9822(00)00742-9

Published

2019-08-27

How to Cite

The Characteristic of the Main Ischemic Damaging Biomarkers of Muscle Tissue. (2019). Notes in Current Biology, 3(387), 162-172. https://doi.org/10.29038/2617-4723-2019-387-162-172