The Features of the Land Snail Monacha (Monacha) Cartusiana (O. F. Muller, 1774) Ecological Niche in Technosol on Gray-Green Clay (Nikopol Manganese ore Basin)
DOI:
https://doi.org/10.29038/2617-4723-2019-387-91-100Keywords:
ecological niche, reclamation, terrestrial mollusks, environmental factors, phytoindicationAbstract
The paper deals with features of the Monacha (Monacha) cartusiana (O. F. Muller, 1774) ecological niche in technosols on gray-green clay (Nikopol manganese ore basin) and displayed the stationary at the time of these results. The research was conducted during 2012–2014 years at the remediation site within Nikopol manganese ore basin in city Pokrov. The electrical conductivity of soil, aggregate composition, soil penetration resistance to a depth of 0,5 m, the projective cover physiognomic vegetation types and phytoindication assessment of the environmental regimes were measured as eco-geographic predictors of the ecological niche of the land snail. ENFA- analysis was applied to quantify the characteristics of ecological niche. The electrical conductivity of the sod- lithogenic soil on gray-green clay is 0,67–0,78 MPa/m. Among the contents of aggregate fractions dominated sized units 1–2, ..., 3–5 mm. The soil penetration resistance of the top layer of sod-lithogenic soil to gray-green clay is 1,62-2,16 MPa and increasing with depth. The sharpest increase in hardness is observed at a depth of 15–20 cm, then the growth of this index is rather moderate. Free from soil surface vegetation is 48,1–53,6 %. Most projective cover set for physiognomic type III. The study established that ecological niche marginality of the M. cartusiana is determined by such eco-geographical predictors as content size units 1–2 and 2–3 mm (positive marginality) and> 10 mm (negative marginality), soil penetration resistance of soil on 0–5, 20–25 and 35–40 cm and physiognomic appearance of vegetation. This species prefers areas with larger projective cover physiognomic type III and avoid areas with a predominance of physiognomic types V and VI. It prefers areas with high soil aeration. Specialization of the M. cartusiana ecological niche is determined by such eco-geographical predictors as content size 0,5–1,0 units and> 10 mm, soil penetration resistance at different depths, soil electrical conductivity, projective cover of the physiognomic types III and VI. The peculiarities of ecological niches are stationary for a period of research. Clearly, such stability is due to the type of environmental standard space-time regularity environmental regimes in terms of the type technosol. Repeatability of time spatial patterns of edaphic properties can be explained by the formation of soil-like body, which is technosol, system properties. Particularly important plant groups in forming and maintaining regularity in the time of ground structures, which impart soil status due to ecomorphic organizing of the soil body should be noted. Ecomorphic structures can be identified by evaluating the spatial variability of physical properties of soil and vegetation physiognomic features, and environmental assessments of phytoindication modes. These markers can be used to describe the ecological niche of terrestrial molluscs as an eco-geographical predictors of ecological niches. Thus, the spatial patterns of soil properties variability, patterns of variability structure of plant communities thus structuring ecological environment show that this heterogeneity affects the spatial distribution of terrestrial molluscs on the level of individual spatial biogeocoenosis.
References
2. Dray, S.; Pélissier, R.; Couteron, P.; Fortin, M.-J.; Legendre, P.; Peres-Neto, P. R.; Bellier, E.; Bivand, R.; Blanchet, F. G.; De Cáceres, M.; Dufour, A.-B.; Heegaard, E.; Jombart, T.; Munoz, F.; Oksanen, J.; Thioulouse, J.; Wagner, H. H. Community ecology in the age of multivariate multiscale spatial analysis. Ecological Monographs; 2012, 82, 257–275. https://doi.org/10.1890/11-1183.1
3. Thuiller, W.; Lavorel, S.; Midgley, G.; Lavergne, S. Rebelo, T. Relating plant traits and species distributions along bioclimatic gradients for Leucadendron taxa. Ecology; 2004, 85, 1688–1699. https://doi.org/10.1890/03-0148
4. Millar, A. J.; Waite, S. Mollusks in coppice woodland. Journal of Conchology; 1999, 36, 25–48.
5. Martin, K.; Sommer, M. Relationships between land snail assemblage patterns and soil properties in temperate-humid forest ecosystems. Journal of Biogeography; 2004, 31(4), 531–545. https://doi.org/10.1046/j.1365-2699.2003.01005.x
6. Müller, J.; Strätz, C.; Hothorn, T. Habitat factors for land snails in European beech forests with a special focus on coarse woody debris. European Journal of Forest Research; 2005, 124(3), 233–242. https://doi.org/10.1007/s10342-005-0071-9
7. Weaver, K. F.; Anderson, T.; Guralnick, R. Combining phylogenetic and ecological niche modeling approaches to determine distribution and historical biogeography of Black Hills mountain snails (Oreohelicidae). Diversity and Distributions; 2006, 12(6), 756–766. https://doi.org/10.1111/j.1472-4642.2006.00289.x
8. Brind'Amour, A.; Boisclair, D.; Dray, Legen-dre, S. Relationships between species feeding traits and environmental conditions in fish communities: A three–matrix. Ecological Applications; 2011, 21, 363–377. https://doi.org/10.1890/09-2178.1
9. McGill, B. J.; Enquist, B. J.; Weiher, E.; Westoby, M. Rebuilding community ecology from functional traits. Trends in Ecology and Evolution; 2006, 21, 178–184. https://doi.org/10.1016/j.tree.2006.02.002
10. Ondina, P.; Hermida, J.; Outeiro, A.; Mato, S. Relationships between terrestrial gastropod distribution and soil properties in Galicia (NW Spain). Applied Soil Ecology; 2004, 26(1), 1–9. https://doi.org/10.1016/j.apsoil.2003.10.008
11. Ondina, P.; Mato, S.; Hermida, J.; Outeiro, A. Importance of soil exchangeable cations and aluminium content on land snail distribution. Applied Soil Ecology; 1998, 9(1), 229–232. https://doi.org/10.1016/s0929-1393(98)00080-8
12. Nekola, J. C. Large-scale terrestrial gastropod community composition patterns in the Great Lakes region of North America. Diversity and Distributions; 2003, 9(1), 55–71. https://doi.org/10.1046/j.1472-4642.2003.00165.x
13. Horsák, M.; Hájek, M.; Tichý, L.; Juřičková, L. Plant indicator values as a tool for land mollusc autecology assessment. Acta Oecologica; 2007, 32(2), 161–171. https://doi.org/10.1016/j.actao.2007.03.011
14. Dvořáková, J.; Horsák, M. Variation of Snail Assemblages in Hay Meadows: Disentangling the Predictive Power of Abiotic Environment and Vegetation. Malacologia; 2012, 55(1), 151–162. https://doi.org/10.4002/040.055.0110
15. Schenková, V.; Horsák, M.; Plesková, Z.; Pawlikowski, P. Habitat preferences and conservation of Vertigo geyeri (Gastropoda: Pulmonata) in Slovakia and Poland. Journal of Molluscan Studies; 2012, 78, 105–111. https://doi.org/10.1093/mollus/eyr046
16. Самсонова, В. П. (2008). Пространственная изменчивость почвенных свойств: на примере дерново-подзолистых почв. Изд. ЛКИ: Москва; 160 с.
17. Медведев, В. В. Неоднородность почв и точное земледелие. Ч. 2. Результаты исследований. Харьков, 2009; 260 с.
18. Медведев, В. В. Неоднородности почв и точное земледелие. Часть 1. Ведение в проблему. Харьков; Изд. 13 тип: 2007; 296 с.
19. Nekola, J. C.; Smith, T. M. Terrestrial gastropod richness patterns in Wisconsin carbonate cliff communities. Malacologia; 1999, 41(1), 253–270.
20. Bohan, D. A.; Raybould, A.; Mulder, C.; Woodward, G.; Tamaddoni–Nezhad, A.; Bluthgen, N.; Pocock, M.J.O.; Muggleton, S.; Evans, D. M.; Astegiano, J.; Massol, F.; Loeuille, N.; Petit. S.; Macfadyen, S. Networking agroecology: integrating the diversity of agroecosystem interactions. Adv. Ecol. Res.; 2013, 49, 1–67. https://doi.org/10.1016/b978-0-12-420002-9.00001-9
21. Myšák, J.; Horsák, M.; Svobodová, E.; Cernohorsky, N. Small-scale distribution of terrestrial snaols: patterns of species richness and abundance related to area. J. Mollus. Stud.; 2013, 1–10. https://doi.org/10.1093/mollus/eyt002
22. Hall, L. S.; Krausman, P. R.; & Morrison, M. L. The habitat concept and a plea for standard terminology. Wildlife Society Bulletin; 1997, 25(1), 173–182.
23. Calenge, C.; Basille, M. (2008). A general framework for the statistical exploration of the ecological niche. Journal of Theoretical Biology; 1997, 252(4), 674–685. https://doi.org/10.1016/j.jtbi.2008.02.036
24. Demidov, A. A.; Kobets, A. S.; Gritsan, Yu. I.; Zhukov, A. V. Spatial agricultural ecology and soil recultivation. Dnepropetrovsk: A. L. Svidler Press., 2013; 560 pp.
25. Hutchinson, G. E. Concluding remarks. Cold Spring Harbour Symposium on Quantitative Biology; 1957, 22, 415–427. https://doi.org/10.1101/sqb.1957.022.01.039
26. Hirzel A. H.; Guisan A. Which is the optimal sampling strategy for habitat suitability modeling. Ecological Modelling; 2002, 157(2–3), 331–341. https://doi.org/10.1016/s0304-3800(02)00203-x
27. Calenge, C.; Darmon, G.; Basille, M.; Loison, A.; Jullien, J. M. The factorial decomposition of the Mahalanobis distances in habitat selection studies. Ecology; 2008, 89, 555–566. https://doi.org/10.1890/06-1750.1
28. Zhukov O. V.; Zadorozhna, G. O.; Maslikova K. P.; Andrusevych K. V.; Lyadskaya I. V. Tehnosols Ecology: Monograph. Dnipro: Zhurfond; 2017, 442 p. (in Ukrainian)
29. Zhukov, O. V.; Yorkina, N. V. Ecotoxicological and malacoindicatic evaluation of the environmental state of surface water currents of the city of Melitopol. Problems of bioindications and ecology; 2017, 22 (1), 143–158.
30. Kunakh, O. N.; Kramarenko, S. S.; Zhukov, A. V.; Kramarenko, A. S.; Yorkina, N. V. Fitting competing models and evaluation model parameters of the abundance distribution of the land snail Vallonia pulchella (Pulmonata, Valloniidae). Regulatory Mechanisms in Biosystems; 2018, 9(2), 198–202. doi:10.15421/021829
31. Balashov, I. A.; Kramarenko, S. S.; Zhukov, A. V.; Shklyaruk, A. N.; Baidashnikov, A. A.; Vasyliuk, A. V. Contribution to the knowledge of terrestrial molluscs in southeastern Ukraine. Malacologica Bohemoslovaca; 2013, 12, 62–69.
32. Zhukov, O. V.; Kunah, O. M.; Taran, V. O.; Lebedinska, M. M. Spatial variability of soils electrical conductivity within arena of the river dnepr valley (territory of the natural reserve «Dniprovsko–Orilsky»). Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University; 2016, 6 (2), 129–157 (in Ukranian). DOI: http://dx.doi.org/10.15421/201646
33. Didukh, Ya. P. The ecological scales for the species of Ukrainian flora and their use in synphy-toindication. Phytosociocentre; Kyiv: 2011; 147 pp.
34. Zhukov, A.; Gadorozhnaya, G. Spatial heterogeneity of mechanical impedance of a typical chernozem: the ecological approach. Ekológia (Bratislava); 2016, 35, 263–278. DOI: https://doi.org/10.1515/eko-2016-0021
35. Zhukov, A. V., Zadorozhnaya, G. A. Ecomorphes of the sod-lithogenic soils on reddish-brown clays. Issues of steppe forestry and forest eclamation of soils; 2016, 45, 91–103.
36. Zhukov, A. V. Belgard-Akimov’s ecomorphes and ecological matrix. Ecology and bnoospherology; 2010, 21(3–4), 109–111.
37. Zhukov, O. V. The ecomorphic analysis of the soil animals consortia. Svidler press: Dnipropetrovsk; 2006; 180 pp.
38. Razumovsky, O. S. Adaptacionizm and behavioural science in the context of the problems of evolution and meaning of life activity. Polignozis; 2003, 2 (22), http://www.polygnozis.ru/default.asp?num= 6&num2=132