The Resistance to Simulated Water Stress of R2 Tobacco Plants Obtained Via Cell Selection With Heavy Metal Ions

Authors

  • Larisa Sergeeva Institute of Plant Physiology and Genetics National Academy of Sciences of Ukraine
  • Larisa Bronnikova Institute of Plant Physiology and Genetics National Academy of Sciences of Ukraine

DOI:

https://doi.org/10.29038/2617-4723-2016-332-7-35-39

Keywords:

tobacco, cell selection, cadmium cations, water deficit, tolerance, proline

Abstract

The cell selection with heavy metal ions for obtaining plant forms, resistant to abiotic stresses is advisable. Especially it is recommended to use cadmium cations for obtaining variants, resistant to water deficit.

On selective media with the addition of lethal for cell cultivars doses of Cd2+ cations resistant tobacco cell lines occurred. Regenerants R0 and seed progenies R1, R2 were obtained from those lines. Cell lines and R0 and R1 plants challenged the water stress that was established by mannitol addition. Variants resistance was combined with high level of free proline. The investigation of R2 plants resistance levels and their proline status were the objects of the research.
Young R2 plants (~ 10,0 cm length) were tested in liquid nutrition solution with the addition of 0,3 M mannitol during 5 days. Such stress pressure was lethal for wild type plants. The leaf free proline level at 5-th day of experiment exceeded normal parameter at ~ 3 times. At 5-th day cultural conditions were changed and plants were divided. Some plants were returned to normal condition the others were moved to solution with higher osmotic stress pressure (0,6 M mannitol). R2 plants actively adapted to both conditions and maintained viability. At second day after resettlement the plans free proline levels decreased in comparison with parameters that were marked before this procedure. There was predicted that this phenomenon was the result of alternative compatible solution (sucrose) accumulation.

References

1. Melchers G. Untersuchungen an kulturen von haploiden geweben von Antirrhinum majus / G. Melchers., L. Bergmann // Ber. Dtsch. Bot. Ges. – 1959. – 78. – P. 21–29.
2. Сидоров В. А. Биотехнология растений. Клеточная селекция. / В. А. Сидоров. – Киев : Наук. думка, 1990. – 280 с.
3. Maliga P. Isolation and characterization of mutants in plant cell culture / P. Maliga // Ann. Rev. Plant Physiol. – 1984. – 35. – P. 519–542.
4. Nies D. H. Microbial heavy-metal resistance / D. H. Nies // Appl. Microbiol. Biotechnol. – 1999. – 51. – P. 730–750.
5. Серѐгин И. В. Физиологические аспекты токсического действия кадмия и свинца на высшие растения / И. В. Серѐгин // Физиология растений. – 2001. – 48. – С. 606–630.
6. Kuthanova A. Cell cycle phase-specific death response of tobacco BY-2 cell line to cadmium treatment / A. Kuthanova, L. Fisher, P. Nick, Z. Opartny // Plant Cell and Envir. – 2008. – 31. – P. 1634–1643.
7. Мельничук Ю. П. Влияние ионов кадмия на клеточное деление и рост растений / Ю. П. Мельничук. – Киев : Наук. думка, 1990. – 148 с.
8. Аллагулова Ч. Р. Дегидрины растений: их структура и предполагаемые функции / Ч. Р. Аллагулова, Ф. Р. Гималов, Ф. М. Шакирова, В. А. Вахитов // Биохимия. – 2004. – 68. – С. 1157–1165.
9. Qian G. Клонирование и секвенирование нового гена, кодирующего выносливость к засухе, LEA3 у тибетского голозерного ячменя / G. Qian, X.-G. Zhai, Z.-X. Han [et al.] // Zuowu xuebao=Acta Agr. Sin. – 2007. – 33. – P. 292–296.
10. Tioleter D. Structure and function of a mitochondrial late embryogenesis abundant protein by desiccation / D. Tioleter, M. Jaquinod, C. Mangavel [et al.] // Plant Cell. – 2007. – 19. – P. 1580–1587.
11. Сергеева Л. Е. Клеточная селекция с ионами тяжѐлых металлов для получения генотипов растений с комплексной устойчивостью к абиотическим стрессам / Л. Е. Сергеева. – Киев : ЛОГОС, 2013. – 211 с.
12. Szabados L. Proline: a multifunctional amino acid / L. Szabados, A. Savoure // Trends Plant Sci. – 2010 – 15. – P. 89–97.
13. Kishor P. B. K. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance / P. B. K. Kishor, S. Sangam, R. Amruta [et al.] // Curr. Sci. – 2005. – 88. – P. 424–432.
14. Banu M. N. A. Proline and glycinebetaine induce antioxidant defense gene expression and suppress cell death in cultured tobacco cells under salt stress / M. N. A. Banu, M. A. Hoque, M. Watanabe-Sugimoto [et al.] // J. Plant Physiol. – 2009. – 166. – P. 146–156.
15. Андрющенко В.К. Модификация метода определения пролина для выявления засухоустойчивых форм рода Lycopersicon Tourn / В. К. Андрющенко, В. В. Саянова, А. А. Жученко и др. // Известия Академии Наук Молдавской ССР. – 1981. – № 4. – С. 55–60.
16. Хасан Д. Влияние хлоридного засоления на прорастание семян и рост проростков Brassica napus L. / Д. Хасан, И. С. Ковтун, М. В. Ефимова // Вестник Томского гос. ун-та. Биология. – 2011, 34.. – С.108–112.
17. Showalter A. M. A bioinformatics approach to the identification, classification and analysis of hydroxyproline-rich glycoproteins / A. M. Showalter, B. Keppler, J. Lichtenberg [et al.] // Plant Physiol. – 2010. – 153. – P. 485–513.
18. Stein H. Elevation of free proline and proline-rich protein levels by simultaneous manipulations of proline biosynthesis and degradation in plants / H. Stein, A. Honig, G. Miller [et al.] // Plant Sci. – 2011. – 181. – P.140–150.
19. Boscaiu M. Osmolyte accumulation in xerophytes as a response to environmental stress / M. Boscaiu, M. Esperanza, O. Fola [et al.] // Bul. Univ. Agr. Sci and Vet Med. Cluj-Napoca Hort. – 2009. – 66. – P. 96–102.

Published

2016-05-23

How to Cite

Sergeeva, L., & Bronnikova, L. (2016). The Resistance to Simulated Water Stress of R2 Tobacco Plants Obtained Via Cell Selection With Heavy Metal Ions. Notes in Current Biology, (7(332), 35–39. https://doi.org/10.29038/2617-4723-2016-332-7-35-39