Peculiarities of Electromyographic Activity of Hand’s Distal Muscles in Women With Different Modal α-Frequency
DOI:
https://doi.org/10.29038/2617-4723-2018-377-115-121Keywords:
flexor, extensor, manual movement, electromyogram, amplitudeAbstract
An important component of the coordinated activity of the brain's motor systems and of the executive apparatus is the question of the relationship between the characteristics of the electroencephalogram's specific rhythms and the features of control of distal muscles. It is believed that the EEG modal α-frequency is determined genetically along with the brain's structural and functional organization and might be related to the level of psychomotor and cognitive abilities. The purpose of the study is to identify the electrical activity of the surface muscles of the hand's fingers as indicators of their functional state at rest and during the execution of manual movements in response to the action of sensory signals in women with different characteristics of the α-rhythm of the EEG. The study involved 136 women aged 19–21 years, who were divided into two groups – with high and low values of EEG modal alpha frequency (IαF), which was determined individually during rest state. Electromyograms of flexor muscle (m. Flexor digitorum superficialis) and extensor (m. Extensor digitorum) fingers of women were registered at rest and during manual compression movements and unclasped fingers of right and left hands in response to rhythmic auditory signals. Functional state of the muscles was evaluated at rest by the average amplitude and by the frequency of background oscillations of EMG, condition of these muscle during manual movements – by the amplitude medium logarithmic change factor and EMG frequency. At rest in women with high IαF was installed more significant lateral and reciprocal differences in the electromyogram parameters of flexor and extensor fingers of the hand compared to the examinees with low individual α-range. During the manual movements women with high modal α-frequency were marked with less contractile activity of superficial finger muscles, especially right hand’s flexors. Women with low α-frequency were marked with less specific and differentiated processes of surface muscles fingers activation. The prospect of further research may be to establish the peculiarities of the electromyographic activity of the hand's distal muscle, under conditions of higher manual complexity of manual movements.
References
2. Ioffe, M. E. Mozgovye mehanizmy formirovanija novyh dvizhenij pri obuchenii: jevoljucija klassicheskih predstavlenij [Brain mechanisms for the formation of new movements in teaching: the evolution of classical ideas], Zhurnal vysshej nervnoj dejatel'nosti, 2003, 53 (1), S. 5–21 (in Russian).
3. Hikosaka O.; Nakamura K.; Sakai K.;Nakahara H. Central mechanisms of motor skill learning. Current Opinion in Neurobiol. 2002, 12 (2), рр 217–222. https://doi.org/10.1016/s0959-4388(02)00307-0
4. Umrjuhin, E. A.; Korobejnikova, I. I.; Karatygin, N. A. Uspeshnost' vypolnenija testovyh zadanij studentami s razlichnymi spektral'nymi harakteristikami α-ritma fonovoj jelektrojencefalogrammy [Success in performing of test assignments by students with different spectral characteristics of the α-rhythm of the background electroencephalogram]. Fiziologija cheloveka, 2009, 35 (5), S. 33–39 (in Russian).
5. Bazanova O. M. Age related alpha activity change differs for males and females and for low and high alpha frequency EEG patterns. Revista Española de Neuropsicología 2008, 10 (1), рр 82–83.
6. Begleiter H.; Porjesz B. Genetics of human brain oscillations. International Journal of Psychophysiology 2006, 60 (2), рр 162–171. https://doi.org/10.1016/j.ijpsycho.2005.12.013
7. Hummel F.; Saur R.; Lasogga S.; Plewnia C; Erb M.; Wildgruber D.; Grodd W.; Gerlof, C. To act or not to act: neural correlates of executive control of learned motor behavior. NeuroImage 2004, 23, рр 1391–1401. https://doi.org/10.1016/j.neuroimage.2004.07.070
8. Morenko A. G.; Tsjos A V.; Kotsan I. Ya. Features of the cortical activity of men having a high or low alpha-frequency background of the EEG while performing alternate finger movements. Helth Problems of Civilization 2014, 8(1), рр 24–31. https://doi.org/10.5114/hpc.2014.57062
9. Morenko, A. G;, Pavlovich, O. S.; Kocan І. Ja. Kortikal'nі aktivacіjnі procesi u cholovіkіv іz visokoju ta niz'koju vihіdnoju іndivіdual'noju chastotoju al'fa-ritmu pіd chas sensomotornoї dіjal'nostі rіznoї skladnostі [Cortex activation processes in men with a high and low initial individual frequency of alpha rhythm at sensory-motor activity of various complexity]. Fіzіologіchnij zhurnal, 2013, 59 (5), S. 41–49 (in Ukrainian).
10. Person, R. S. Spinal'nye mehanizmy upravlenija myshechnym sokrashheniem [Spinal mechanisms of muscle contraction control]. Nauka, Moskva, 1985 (in Russian).
11. Bulgakova, N. V.; Tal'nov, A. M.; Mel'nichuk, O. P.; Kostjukov, O. І. Sistematichnі pomilki pozicіonuvannja ta elektromіografіchna aktivnіst' m’jazіv u odnosuglobovih ruhah ljudini [Systematic errors of positioning and electromyographic activity of the muscles in one-articular motion of a person]. Fіzіologіchnij zhurnal, 2008, 54 (1), S. 17–26 (in Ukrainian).
12. Anokhin A.; Muller V.; Lindenberger U.; Heath A. C.; Myers E. Genetic influences on dynamic complexity of brain oscillations. Neurosci Letters 2006, 397 (1–2), рр. 93–98. doi: 10.1016 / j.neulet.2005.12.025
13. Kulikov, G. A. Princip dominanty i kortikal'nye mehanizmy sluhodvigatel'noj koordinacii [Principle of dominant and cortical mechanisms of auditory motor coordination]. Rossijskij fiziologicheskij zhurnal im. I. M. Sechenova, 2000, 86 (8), S. 961–967 (in Russian).
14. Klimesch W.; Sauseng P.; Hanslmayr S. EEG alpha oscillations: the inhibition–timing hypothesis. Brain Research Reviews, 2007, 53, рр 63–88. https://doi.org/10.1016/j.brainresrev.2006.06.003
15. Zhavoronkova, L. A. Pravshi-levshi. Mezhpolusharnaja asimmetrija biopotencialov mozga cheloveka [Right-handed left-handed. Interhemispheric asymmetry of human brain biopotentials]. Jekoinvest, Krasnodar, 2009, 240 s (in Russian).
16. Laputin, A. M. Biomehanika sportu [Biomechanics of Sport]. Olimpijs'ka literatura, Kyi'v, 2001, 319 s (in Ukrainian).
17. Kaplan, A. Ja.; Borisov, S. V. Dinamika segmentnih harakteristik al'fa-aktivnosti JeJeG cheloveka v pokoe i pri kognitivnyh nagruzkah [Dynamics of segmental characteristics of human EEG alpha activity at rest and at cognitive load]. Zhurnal vysshej nervnoj dejatel'nosti, 2003, 53 (1), S. 22–32 (in Russian).
18. Angelakis E.; Lubar J. F.; Stathopoulou S.; Kounios J . Peak alpha frequency: an electroencephalographic measure of cognitive preparedness. Clinical Neurophysiology 2004, 115, рр 887–897. https://doi.org/10.1016/j.clinph.2003.11.034
19. Vereshhaka, I. V.; Gorkovenko, A. V. Superpozycija motornyh komand u perebigu stvorennja "dvosuglobovyh" statychnyh zusyl' m’jazamy ruky ljudyny [Superposition of motor commands in the process of creating "the two-articular" static efforts of the muscles of the human hand]. Fiziologichnyj zhurnal, 2012, 58 (1), 43 –50 (in Ukrainian).
20. Razumnikova, O. M.; Tarasova, I. V.; Vol'f, N. V. Osobennosti aktivacii kory u lic s vysokoj i nizkoj verbal'noj kreativnost'ju: analiz al'fa 1, 2- ritmov [Features of the activation of the cortex in individuals with high and low verbal creativity: analysis of alpha 1, 2 rhythms]. Zhurnal vysshej nervnoj dejatel'nosti cheloveka, 2009, 59(5), S. 581–586 (in Russian).
21. Mejgal, A. Ju.; Ivukov, A. Ju.; Gerasimova, L. I. Vlijanie obshhego ohlazhdenija na jelektromiograficheskie harakteristiki myshechnogo utomlenija, vyzvannogo dinamometricheskoj nagruzkoj [Effect of general cooling on the electromyographic characteristics of muscle tiredness induced by torque dynamometer]. Fiziologija cheloveka, 2000, 6 (2), 80 s (in Russian).
22. Gerasimova, L. I.; Varlamova, T. V.; Antonen, E. G. Vozrastnye osobennosti turn-amplitudnyh harakteristik jelektromiogrammy pri dozirovannom izometricheskom sokrashhenii [Age features of turne-amplitude characteristics of an electromyogram at a metered isometric contraction], Fiziologija cheloveka, 2004, 30 (3), S. 119–125 (in Russian).
23. Gurfinkel', V. S.; & Levik, Ju. S. Koncepcija shemy tela i motornyj kontrol'. Intellektual'nye procesy i ih modelirovanie. Organizacija dvizhenij [Concept body and motor control. Intellectual processes and their modeling. Organization of movements]. Nauka, Moskva, 1991, S. 59–105 (in Russian).
24. Klimash, A. V.; Ciceroshin, M. N.; & Shepoval'nikov, A. N. Narushenija prostranstvennoj organizacii biojelektricheskoj aktivnosti mozga u bol'nyh s tjazheloj cherepno-mozgovoj travmoj pri razlichnoj vyrazhennosti ugnetenija soznanija [Violations of the spatial organization of bioelectrical activity of the brain in patients with severe craniocerebral trauma with varying severity of oppression of consciousness]. Fiziologija cheloveka, 2010, 36 (5), S. 49–65 (in Russian).