Effect of Suramin on Mitochondrial Membrane Potential

Authors

  • Nadiya Kupynyak Danylo Halytsky Lviv National Medical University
  • Irina Okhai Bogomoletz Institute of Physiology National Academy of Sciences of Ukraine
  • Volodymyr Manko Lviv National University of Ivan Franko

DOI:

https://doi.org/10.29038/2617-4723-2018-377-100-107

Keywords:

RyRs, mRyRs, suramin, Δψ, substrates for oxidation

Abstract

It is known that suramin is an agonist of the ryanodine sensitive Ca2+-channels of the endoplasmic reticulum (RyRs). We hypothesized that it may be an agonist of mitochondrial ryanodine sensitive                Ca2+-channels (mRyRs) too. The effect of suramin on mitochondrial membrane potential of hepatocytes was investigated for the test of the hypothesis. Suramin (1 μM) and isolated mitochondria were added one after another and then membrane potential was recorded. Measurement of the membrane potential of mitochondria was carried out using methyltriphenylphosphonium (ТРМР+) sensitive electrode. Succinate (5 mM), pyruvate   (5 mM) or α-ketoglutarate(5 mM) and ADP (320 nM) were added, respectively, to initiate respiration and to stimulate oxidative phosphorylation. It has been established that the effect of suramin on the mitochondrial membrane potential depends on the presence substrates for oxidation and phosphorylation in the medium of incubation. Under the influence of suramin, the membrane potential of mitochondria during oxidation of exogenous succinate in the state of S4 by Chance and Williams (1955) decreased for 5.88% relative to control. This is possibly caused by the usage of energy of the membrane potential of mitochondria for the transport of Ca2+ ions to the mitochondrial matrix. The suramine increased the mitochondrial membrane potential in the state S4 for 15.2% during oxidation of α-ketoglutarate, and with oxidation of pyruvate - for 39.1% relative to control. These increases in the mitochondrial membrane potential are possibly associated with activation of α-ketoglutarate dehydrogenase or pyruvate dehydrogenase complexes, which, in contrast to succinate dehydrogenase, are Ca2+ -dependent enzymes. Consequently, suramin at a concentration of 1 μM, activates mitochondrial ryanodine sensitive Ca2+-channels of rat hepatocytes and causes an increase in Ca2+ intake to mitochondrial matrix by activation of Ca2+-dependent dehydrogenases, and an increase in the membrane potential of mitochondria.

References

1. Dressel, J. The discovery of germanin by Oskar Dressel and Richard Kothe. J. Chem. Ed. 1961, 38 (12), pp 620–621. https://doi.org/10.1021/ed038p620
2. Stein, C. A.; Larocca, It. V.; Thomas, R.; Mcame, N.; Myzas, C. E. Suramin: An anticancer drug with a unique mechanism of action. J. Clin. Oncol. 1989, 7 (4), pp 499–508. https://doi.org/10.1200/jco.1989.7.4.499
3. Beindl, W.; Mitterauer, T.; Hohenegger, M.; Ijzerman, A. P.; Nanoff, C.; Freissmuth, M. Inhibition of receptor G-protein coupling by suramin analogues. Molecular Pharmacology. 1996, 50 (2), pp 415–423.
4. Burnstock, G. Purinergic signalling in the urinary tract in health and disease. Purinergic Signal. 2014, 10 (1), pp 103–155. https://doi.org/10.1007/s11302-013-9395-y
5. Hohenegger, M.; Mathyash, M.; Poussu, K.; Herrmann-Frank, A.; Sarközi, S.; Lehmann-Horn, F.; Freissmuth, M. Activation of the skeletal muscle ryanodine receptor by suramin and suramin analogs. Mol. Pharmacol. 1996, 50 (6), pp 1443–1453.
6. Dunn, P. M.; Blakeley, A. G. Suramin: A reversible P2-purinoceptor antagonist in the mouse vas deferens. Br. J. Pharmacol. 1988, 93 (2), pp 243–245. https://doi.org/10.1111/j.1476-5381.1988.tb11427.x
7. El-Ajouz, S.; Ray, D.; Allsopp, R. C.; Evans, R. J. Molecular basis of selective antagonism of the P2X1 receptor for ATP by NF449 and suramin: contribution of basic amino acids in the cysteine-rich loop. Br J Pharmacol. 2012, 165 (2), pp 390–400. https://doi.org/10.1111/j.1476-5381.2011.01534.x
8. Layton, D.; Azzi, A. Suramin: a potent inhibitor of the calcium transport in sarcoplasmic reticulum. Biochem Biophys Res Commun. 1974, 59 (1), pp 322–325. https://doi.org/10.1016/s0006-291x(74)80209-3
9. Seewald, M. J.; Olsen, R. A.; Powis, G. Suramin blocks intracellular Ca2+ release and growth factor-induced increases in cytoplasmic free Ca2+ concentration. Cancer Lett. 1989, 49 (2), pp 107–113. https://doi.org/10.1016/0304-3835(90)90145-n
10. Voogd, T. E.; Vansterkenburg, E. L.;Wilting, J.; Janssen, L. H. Recent research on the biological activity of suramin. Pharmacol. Rev. 1993, 45(2), pp 177–203.
11. Sitsapesan, R.; Williams, A. J. Modification of the conductance and gating properties of ryanodine receptors by suramin. J Mernbr Biol. 1996, 153 (2), pp 93–103. https://doi.org/10.1007/s002329900113
12. Fill, M.; Copello, J. A. Ryanodine receptor calcium release channels. Physiol Rev. 2002, 82 (4), pp 893–922. https://doi.org/10.1152/physrev.00013.2002
13. Pierebon, N.; Renard-Rooney, D.; Gaspers, L. Ryanodine receptors in liver. J. Biol. Chem. 2006, 45, pp 34086–34095. https://doi.org/10.1074/jbc.m607788200
14. Kupynyak, N. I.; Ikkert, O. V.; Shlykov, S. G.; Babich, L. G.; Manko, V.V. Mitochondrial ryanodine-sensitive Ca2+ channels of rat liver. Cell Biochemistry and Function. 2017, 35 (1), pp 42–49. https://doi.org/10.1002/cbf.3243
15. Kupynyak, N. I., Ikkert, O. V., Manʹko, V.V. Rolʹ rianodynchutlyvykh Ca2+-kanaliv u rehulyatsiyi dykhannya mitokhondriy pechinky shchuriv [The role of ryanodine-sensitive Ca2+ channels in regulation respiration mitochondria of the liver of rats]. Visnyk Lʹvivsʹkoho universytetu. Seriya biolohichna. 2017. Vypusk 76. S. 193–205 (in Ukrainian). https://doi.org/10.30970/vlubs.2017.76.24
16. Jonson, D.; Lardy, H. Methods in Еnzymology. New York. 1967, 10, pp 94–102.
17. Lowry, O.; Rosebroughh, N.; Farr, A. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193 (1), pp 265–275.
18. Brand, M. D.; Brown, G. C.; Cooper, C. E. Bioenergetics: a practical approach; Oxford. IRL Press, 1995: pp 39–62.
19. Nadtochiy, S. M.; Tompkins, A.; Brookes, P. S. Different mechanisms of mitochondriаl proton leak in ischemia/reperfusion injury and precondition: implications for pathology and cardioprotection. Biochem. J. 2006, 395 (3), pр. 611–618. https://doi.org/10.1042/bj20051927
20. Chance, B.; Williams, G. Respiratory enzymes in oxidative phosphorylation. The steady state. J. Biol. Chem. 1955, 217, pр. 409–427.
21. Panov, A. V.; Scaduto, R. C. Influence of calcium on NADH and succinate oxidation by rat heart submitochondrial particles. Archives of Biochemistry and Biophysics. 1995, 316 (2), pр. 815–820. https://doi.org/10.1006/abbi.1995.1109
22. Rutter, J.; Winge, D. R.; Schiffman, J. D. Succinate Dehydrogenase – Assembly, Regulation and Role in Human Disease Mitochondrion. 2010, 10(4) pр. 393–401. https://doi.org/10.1016/j.mito.2010.03.001
23. Denton, R. M. Regulation of mitochondrial dehydrogenases by calcium ions. Biochim Biophys Acta. 2009, 1787 (11), 1309–1316. https://doi.org/10.1016/j.bbabio.2009.01.005
24. Bookelman, H. J.; Trijbels, M. F.; Sengers, R. C.; Janssen, A.J.; Veerkamp, J. H.; Stadholjders, T A. Pyruvate oxidation in rat and human skeletal muscle mitochondria. Biochemical Medicine. 1978, 20 (3), pр. 395–403. https://doi.org/10.1016/0006-2944(78)90089-3
25. Labajova, A.; Vojtiskova, A.; Krivakova, P.; Kofranek, J.; Drahota, Z.; Houstek, J. Evaluation of mitochondrial membrane potential using a computerized device with a tetraphenylphosphonium-selective electrode. Anal Biochem. 2006, 353 (1), pр. 37–42. https://doi.org/10.1016/j.ab.2006.03.032
26. Denton, R. M.; Mccormack, J. G.; Rut-I-Er, G. A.; Burnett, P.; Edgell, N. J.; Moule, S. K.; Diggle, T. A. The hormonal regulation of pyruvate dehydrogenase complex. Adv Enzyme Regul. 1996, 36, pр. 183–198. https://doi.org/10.1016/0065-2571(95)00020-8
27. Rutter, G. A.; Denton R. M. The binding of Ca2+ ions to pig-heart NAD+-isocitrate dehydrogenase and the 2-oxoglutarate dehydrogenase complex. Biochem. J., 1989, 263 (2), pр. 453–462. https://doi.org/10.1042/bj2630453
28. Qi, F.; Pradhan, R. K.; Dash, R. K.; Beard, D. A. Detailed kinetics and regulation of mammalian 2-oxoglutarate dehydrogenase. BMC Biochem. 2011, 26, pр. 12–53. https://doi.org/10.1186/1471-2091-12-53
29. Wan, B.; Lanoue, K. F.; Cheung, J. Y.; Scaduto, R. C. Regulation of citric-acid cycle by calcium. J. Biol. Chem. 1989, 264 (23), pр. 13430–13439.
30. Siess, E. A.; Wieland, O. H. Regulation of pyruvate dehydrogenase interconversion in isolated hepatocytes by the mitochondrial ATP/ADР. ratio. FEBS Lett. 1975, 52 (2), pр. 226–30. https://doi.org/10.1016/0014-5793(75)80811-8
31. Taylor, S. I.; Mukherjee, C.; Jungas, R. L. Regulation of pyruvate dehydrogenase in isolated rat liver mitochondria. Effects of octanoate, oxidation-reduction state, and adenosine triphosphate to adenosine diphosphate ratio. J Biol Chem. 1975, 250 (6), pр. 2028–2035.
32. Roche, T. E.; Baker, J. C.; Yan, X.; Hiromasa, Y.; Gong, X.; Peng, T.; Dong, J.; Turkan, A.; Kasten, S. A. Distinct regulatory properties of pyruvate dehydrogenase kinase and phosphatase isoforms. Prog Nucleic Acid Res Mol Biol. 2001, 70, pр. 33–75. https://doi.org/10.1016/s0079-6603(01)70013-x

Published

2018-06-26

How to Cite

Kupynyak, N., Okhai, I., & Manko, V. (2018). Effect of Suramin on Mitochondrial Membrane Potential. Notes in Current Biology, (4(377), 100–107. https://doi.org/10.29038/2617-4723-2018-377-100-107