Free Radical Oxidation of Proteins, Lipid Profile Changes and functional status in Rats liver with acquired Insulin Resistance, Iodine Defficiency and Insulin Resistance in Combination with Iodine Defficiencyin

Authors

DOI:

https://doi.org/10.29038/NCBio.21.2.30-33

Keywords:

aminotransferases, triacylglycerol, oxidative modification of proteins

Abstract

Relevance of the topic – according to modern ideas, insulin resistance and iodine deficiency are deep pathophysiological processes that trigger a cascade of pathological reactions and lead to the formation of a complex of disorders and diseases, so a thorough study of the fundamental mechanisms of their occurrence and development is extremely important.
The purpose of the study was the content of protein peroxidation products, lipid spectrum parameters and the level of aminotransferas-es in rats with insulin resistance, iodine deficiency, and insulin resistance in combination with iodine deficiency.
Material and methods. The study was performed on 45 white nonlinear rats weighing 120–180 g, which were divided into three exper-imental groups: rats with insulin resistance (1st experimental group, n = 15), animals with iodine deficiency (2nd experimental group), ani-mals with insulin resistance in combined with iodine deficiency (3rd experimental group, n = 15). The control group consisted of 15 intact rats. The content of oxidative protein modification products in the blood and liver tissue of rats was determined. Blood lipid spectrum was assessed by serum levels of triacylglycerols, total cholesterol, high-density lipoproteins and low-density lipoproteins, followed by calculation of the atherogenic factor. The activity of aspartate aminotransferase and alanine aminotransferase was determined in the blood.

Results. It was found that the content of products of oxidative modification of proteins in the liver and blood tissue of animals of ex-perimental groups increases. The most pronounced differences in the parameters of the lipid spectrum in relation to the control were found in animals with insulin resistance in combination with iodine deficiency. In animals of this group, the level of cholesterol was twice the control, the content of triacylglycerols increased by 60.32 % compared to the control, the content of low-density lipoproteins exceeded the control by 2.2 times, and high-density lipoproteins decreased relative to the control by 75.74 % . Aspartate aminotransferase and alanine aminotransfer-ase activity in animals of this experimental group exceeded the control by 75 % and 78 %, respectively.
Conclusions. In the blood and liver tissue of rats with insulin resistance, iodine deficiency, and insulin resistance in combination with iodine deficiency, the content of free radical oxidation products increases. The content of cholesterol, triacylglycerols, low-density lipopro-teins increases in the blood, the content of high-density lipoproteins decreases, the activity of aspartate aminotransferase and alanine ami-notransferase increases. The most pronounced differences in the indicators in relation to the control were found in animals with insulin re-sistance in combination with iodine deficiency.

References

1. Марущак, М. І.; Антонишин, І. В.; Габор, Г. Г.; Брижиський, А. В. Вплив дисбалансу мікроелементів на регуляцію апоптозу в щурів з аліментарним ожирінням. Вісник науко-вих досліджень (3). 2015, с 97–100.
2. Chung, H. Iodine and thyroid function. Annals of Pediatric Endocrinology & Metabolism. 2014, p 8–12.
3. Ramachandran, К.; Ebenezer, W.; Thangapaneer, S.; Shyam, K. Relationship between lipoprotein(a) and thyroid hormones in hy-pothyroid patients. Journal of Clinical and Diagnostic Research. 2014, 2, p 37–39.
4. Desai, J.; Vachhani, U. N.; Modi, G.; Chauhan, K. A study of correlation of serum lipid profile in patients with hypothyroid-ism. International Journal of Medical Science and Public Health. 2015, 8, p 1108–1112.
5. Rizos, C. V. Effects of thyroid dysfunction on lipid profile. The Open Cardiovascular Medicine Journal. 2011, 5, p 76–84.
6. Longhi, S. Thyroid function and obesity. J. Clin. Res. Pediatr. Endocrinol. 2013, 5, p 40–44.
7. Kok-Yong, С.; Soelaiman, I.; Isa, N. [et al.]. The relationships between thyroid hormones and thyroid-stimulating hormone with lipid profile in euthyroid men. Int. J. Med. Sci. 2014, 4, p 349–355.
8. Саган, Н. Т.; Попадинець, О. Г.; Дубина, Н. М. Вплив йододе-фіциту і гіпотиреозу на різні органи: теоретичний і клінічний аспекти. Вісник проблем біології і медицини. 2016. Вип. 2(2), с 296–300.
9. Нечипорук, В. М.; Корда, М. М. Метаболізм при гіпо- та гіпертиреозі. Вісн. наук. дослідж. 2015, 3, с 4–7.
10. Mironchik, V. V. Method of determination of lipid hydroperoxides in biological tissues. Patent SU, no. 1084681. 1984 (in Russian).
11. Дубинина, Е. Е.; Морозова, М. Г.; Леонова, Н. В. Окислительная модификация белков плазмы крови больных психическими расстройствами (депрессия, деперсонализация). Вопросы медицинской химии. 2000, 4, с 54–58.
12. Кравченко, В. І. Медичні проблеми йододефіциту та протидія йодозалежним захворюванням. Ендокринологія. 2014, 19(4), с 312.
13. Купчак, Н. Г; Покотило, О. С.; Покотило, О. О. Дослідження впливу йоду на вміст окремих класів ліпідів у крові щурів з експериментальним ожирінням. Наукові записки ТНПУ ім. В. Гнатюка. Серія: Біологія. 2017; с 265–269.
14. Гложик, І. З.; Багрій, М. М.; Бігун, Р. Р.; Варунків, С. В. Структурно-метаболічні особливості печінки за умов йододефіциту. Матеріали науково-практичної конференції «Вплив довкілля Прикарпаття на перебіг фізіологічних процесів». Івано-Франківськ, 2017; с 36.
15. Гложик, І. З. Біохімічні маркери вільнорадикального окиснення та обміну ліпідів у щурів з ожирінням, йододефіцитом та ожирінням у поєднанні з йододефіцитом. Українсь-кий журнал медицини, біології та спорту. 2021, 6, 4(32), с 166–171.

Published

2022-02-03

Issue

Section

Human and Animal Physiology

How to Cite

Free Radical Oxidation of Proteins, Lipid Profile Changes and functional status in Rats liver with acquired Insulin Resistance, Iodine Defficiency and Insulin Resistance in Combination with Iodine Defficiencyin. (2022). Notes in Current Biology, 2(2), 30-33. https://doi.org/10.29038/NCBio.21.2.30-33