Morphofunctional characteristics of cerebrospinal fluid

Authors

  • Pykalyuk V.S Lesya Ukrainka Volyn European National University Lutsk, Ukraine
  • Antonyuk O.P. Bukovinian State Medical Unaversity, Chernivtsi, Ukraine
  • Kabarchuk V.S. Lesya Ukrainka Volyn European National University Lutsk, Ukraine
  • Lomeiko S.M. Danylo Halytsky Lviv National Medical University
  • Solovey L. M. Lesya Ukrainka Volyn European National University Lutsk, Ukraine

DOI:

https://doi.org/10.29038/NCBio.24.2-8

Keywords:

cerebrospinal fluid, vascular plexuses, lumbar puncta, CSF therapy.

Abstract

According to the “classical” hypothesis, cerebrospinal fluid (CSF) is secreted in portions in the intracerebral ventricular system and moves to the sites of its absorption and circulation (pachyon granulations, perineural spaces of cranial nerves and perivascular spaces of). Numerous experiments and the results of neuroimaging studies indicate the multifunctionality of CSF. The cerebrospinal fluid provides mechanical resistance, cushioning and normal development of the central nervous system, transport of nutrients and removal of metabolic by-products. The cerebrospinal fluid system plays a basic role in the CNS, as it ensures normal neuroontogenesis, regulation of its trophism, circadian rhythms, antioxidant and mechanical protection, reduces the effective weight of the brain, ensures homeostasis and interconnection between the CNS and the peripheral nervous, vascular and immune systems (a single neuro-immune-humoral regulation). CSF pathology is most commonly associated with hydrocephalus, intracranial hypertension, and pseudotumor cerebri syndrome; disruption of its homeostasis can contribute to the accumulation of metabolites in aging and neurodegenerative diseases. Spinal tap of the subarachnoid space is an important therapeutic and diagnostic procedure in the practice of neurologists. The absence of species and individual antigenic specificity opens up broad prospects for xenogenic CSF therapy.

References

1. Pingle SC, Lin F, Anekoji MS, Patro PK, Datta S, Jones LD, et al. Exploring the role of cerebrospinal fluid as analyte in neurologic disorders. Future Sci OA. 2023;9(4):FSO851. doi: 10.2144/fsoa-2023-0006.

2. Brinker T, Stopa E, Morrison J, Klinge P. A new look at cerebrospinal fluid circulation. Fluids Barriers CNS. 2014;11:10. doi: 10.1186/2045-8118-11-10.

3. Pykalyuk V.S., Bessalova Ye. Yu., Oleunicova O. K., Suchasnyu poglyad na regulatornu rol cerebrospinalnoi ridyny v organizmi ssavciv ta ludyny. Akt. Pytannya antropologii. Minsk: «Bil. nauka» 2014;9:265-274. (In Ukraine).

4. Czarniak N, Kamińska J, Matowicka-Karna J, Koper-Lenkiewicz OM. Cerebrospinal Fluid–Basic Concepts Review. Biomedicines. 2023;11(5):1461. doi: 10.3390/biomedicines11051461.

5. Tumani H, Huss A, Bachhuber F. The cerebrospinal fluid and barriers - anatomic and physiologic considerations. Handb Clin Neurol. 2017:146:21-32. doi: 10.1016/B978-0-12-804279-3.00002-2.

6. Sakka L, Coll G, Chazal J. Anatomy and physiology of cerebrospinal fluid. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2011;128:309–316. doi: 10.1016/j.anorl.2011.03.002.

7. Spector R, Keep RF, Snodgrass SR, Smith QR, Johanson CE. A balanced view of choroid plexus structure and function: Focus on adult humans. Exp. Neurol. 2015;267:78–86. doi: 10.1016/j.expneurol.2015.02.032.

8. Damkier HH, Brown PD, Praetorius J. Cerebrospinal fluid secretion by the choroid plexus. Physiol Rev. 2013;93(4):1847-92. doi: 10.1152/physrev.00004.2013.

9. Kant S, Stopa EG, Johanson CE, Baird A, Silverberg GD. Choroid plexus genes for CSF production and brain homeostasis are altered in Alzheimer’s disease. Fluids Barriers CNS. 2018;15:34. doi: 10.1186/s12987-018-0120-7.

10. MacAulay N, Keep RF, Zeuthen T. Cerebrospinal fluid production by the choroid plexus: A century of barrier research revisited. Fluids Barriers CNS. 2022;19:26. doi: 10.1186/s12987-022-00323-1.

11. Yamada S. Cerebrospinal fluid dynamics. Croat. Med. J. 2021;62:399–410. doi: 10.3325/cmj.2021.62.399.

12. Praetorius J, Nielsen S. Distribution of sodium transporters and aquaporin-1 in the human choroid plexus. Am. J. Physiol.-Cell Physiol. 2006;291:59–67. doi: 10.1152/ajpcell.00433.2005.

13. Praetorius J, Damkier HH. Transport across the choroid plexus epithelium. Am J Physiol Cell Physiol. 2017;312(6):673-686. doi: 10.1152/ajpcell.00041.2017.

14. Naseri Kouzehgarani G, Feldsien T, Engelhard HH, Mirakhur KK, Phipps C, Nimmrich V, Clausznitzer D, Lefebvre DR. Harnessing cerebrospinal fluid circulation for drug delivery to brain tissues. Adv. Drug Deliv. Rev. 2021;173:20–59. doi: 10.1016/j.addr.2021.03.002.

15. Jessen NA, Munk AS, Lundgaard I, Nedergaard M. The Glymphatic System: A Beginner’s Guide. Neurochem. Res. 2015;40:2583–2599. doi: 10.1007/s11064-015-1581-6.

16. Brodbelt A. CSF pathways: a review. Br J Neurosurg. 2007;21(5):510-20. doi: 10.1080/02688690701447420.

17. Chow BW, Gu C. The molecular constituents of the blood–brain barrier. Trends Neurosci. 2015;38:598–608. doi: 10.1016/j.tins.2015.08.003.

18. Proulx ST. Cerebrospinal fluid outflow: a review of the historical and contemporary evidence for arachnoid villi, perineural routes, and dural lymphatics. Cellular and Molecular Life Sciences. Cell Mol Life Sci. 2021;78(6):2429–2457. doi: 10.1007/s00018-020-03706-5.

19. Kelbich P, Hrach K, Spicka J, Vachata P, Radovnicky T, Hanuljakova E, Krejsek J. Basic Analysis of the Cerebrospinal Fluid: An Important Framework for Laboratory Diagnostics of the Impairment of the Central Nervous System. Curr Issues Mol Biol. 2022;44(8):3666–3680. doi: 10.3390/cimb44080251.

20. Pykalyuk V.S, Bessalova Ye. Yu., Kryvencov M.A., Shaimardanova L.R., Kyselyov V.V. Onthogenetychni osoblyvosti morphophunkcionalnych charakterystyk I regeneratornych potenciy riznych organiv ta system pry vvedenni spynnomozkovoyi ridyny. Morphologiya. 2009;36(4):35-43. (In Ukraine).

21. Filis AK, Aghayev K, Vrionis FD. Cerebrospinal fluid and hydrocephalus: Physiology, diagnosis, and treatment. Cancer Control. 2017;24:6–8. doi: 10.1177/107327481702400102.

22. Pardridge WM. CSF, blood-brain barrier, and brain drug delivery. Expert Opin. Drug Deliv. 2016;13:963–975. doi: 10.1517/17425247.2016.1171315.

23. Engelhardt B, Vajkoczy P, Weller RO. The movers and shapers in immune privilege of the CNS. Nat Immunol. 2017;18(2):123–131. doi: 10.1038/ni.3666.

24. Redzic ZB, Segal MB. The structure of the choroid plexus and the physiology of the choroid plexus epithelium. Adv Drug Deliv Rev. 2004 Oct 14;56(12):1695-716.

25. De Maria L, Brinjikji W, Lanzino G. Unruptured brain arteriovenous malformations and hydrocephalus: Case series and review of the literature. J Clin Neurosci. 2019;64:116-121. doi: 10.1016/j.jocn.2019.03.042.

26. Djukic M, Lange P, Erbguth F, Nau R. Spatial and temporal variation of routine parameters: pitfalls in the cerebrospinal fluid analysis in central nervous system infections. J Neuroinflammation. 2022;19:174. doi: 10.1186/s12974-022-02538-3.

27. Solár P, Zamani A, Kubíčková L, Dubový P, Joukal M. Choroid plexus and the blood–cerebrospinal fluid barrier in disease. Fluids Barriers CNS. 2020;17:35. doi: 10.1186/s12987-020-00196-2.

28. Rasmussen MK, Mestre H, Nedergaard M. Fluid transport in the brain. Physiol Rev. 2021;102(2):1025–1151. doi: 10.1152/physrev.00031.2020.

29. Feng Xiao, Shigang Lv, Zhitao Zong, Lei Wu, Xueping Tang, Wei Kuang, et al. Cerebrospinal fluid biomarkers for brain tumor detection: clinical roles and current progress. Am J Transl Res. 2020; 12(4):1379–1396. https://pubmed.ncbi.nlm.nih.gov/32355549.

30. Pautova A, Burnakova N, Revelsky A. Metabolic Profiling and Quantitative Analysis of Cerebrospinal Fluid Using Gas Chromatography–Mass Spectrometry: Current Methods and Future Perspectives. Molecules. 2021;26(12):3597. doi: 10.3390/molecules26123597.

31. Kahle KT, Kulkarni AV, Limbrick DD, Warf BC. Hydrocephalus in children. Lancet. 2016;387(10020):788-99. doi: 10.1016/S0140-6736(15)60694-8.

32. Guerra M, Blázquez JL, Rodríguez EM. Blood - brain barrier and foetal-onset hydrocephalus, with a view on potential novel treatments beyond managing CSF flow. Fluids Barriers CNS. 2017;14:19. doi: 10.1186/s12987-017-0067-0.

33. Nakajima M, Kawamura K, Akiba C, Sakamoto K, Xu H, Kamohara C, et al. Differentiating comorbidities and predicting prognosis in idiopathic normal pressure hydrocephalus using cerebrospinal fluid biomarkers. Croat Med J. 2021:62:387-98. doi: 10.3325/cmj.2021.62.387.

34. Lindstrøm EK, Ringstad G, Kent-Andre Mardal, Per Kristian Eide. Cerebrospinal fluid volumetric net flow rate and direction in idiopathic normal pressure hydrocephalus. 2018:20: 731-741. doi: 10.1016/j.nicl.2018.09.006.

35. Qvarlander S, Ambarki K, Wåhlin A, Jacobsson J, Birgander R, Malm J, Eklund A. Cerebrospinal fluid and blood flow patterns in idiopathic normal pressure hydrocephalus. Acta Neurol Scand. 2017;135(5):576-584. doi: 10.1111/ane.12636.

36. Deisenhammer F, Zetterberg H, Fitzner B, Zettl UK. The Cerebrospinal Fluid in Multiple Sclerosis. Front Immunol. 2019;10:726. doi: 10.3389/fimmu.2019.00726.

37. Pykalyuk V.S, Korsunska L.L., Trach V.V., Romenskyy A.O., Suchasni moghlyvosty lykvoroterapii postinsulthnych chvorych ta ditey z rezydualnymy encephalopatiyamy. Tavriyskyy medyko-biologichnyy visnyk. 2013;16(4(64)):176-182. (In Ukraine).

38. Pykalyuk V.S, Trach V.V., Chopykyan A.A. Likvoroterapiya: rozvytok ta suchasni aspekty. Krymskyy ghurnal ekcper. i kiln. medycyny.2016;6(3):168-177. (In Ukraine).

39. Yan J, Kuzhiumparambil U, Bandodkar S, Dale RC, Fu Sh. Cerebrospinal fluid metabolomics: detection of neuroinflammation in human central nervous system disease. Clin Transl Immunology. 2021;10(8):e1318. doi: 10.1002/cti2.1318.

40. Orešković D, Radoš M, Klarica M. Role of choroid plexus in cerebrospinal fluid hydrodynamics. Neuroscience. 2017;54:69-87. doi: 10.1016/j.neuroscience.2017.04.025.

41. Matsumae M, Sato O, Hirayama A, Hayashi N, Takizawa K, Atsumi H, Sorimachi T. Research into the Physiology of Cerebrospinal Fluid Reaches a New Horizon: Intimate Exchange between Cerebrospinal Fluid and Interstitial Fluid May Contribute to Maintenance of Homeostasis in the Central Nervous System. Neurol Med Chir (Tokyo). 2016;56(7):416–441. doi: 10.2176/nmc.ra.2016-0020.

42. Chao Ren, Peiyuan Yin, Neng Ren, Zhe Wang, Jiahui Wang, Caiyi Zhang, Wei Ge Wang. Cerebrospinal fluid-stem cell interactions may pave the path for cell-based therapy in neurological diseases. Stem Cell Res Ther. 2018;9:66. doi: 10.1186/s13287-018-0807-3.

43. Wichmann ThO, Damkier HH, Pedersen M. A Brief Overview of the Cerebrospinal Fluid System and Its Implications for Brain and Spinal Cord Diseases Front Hum Neurosci. 2021;15:737217. doi: 10.3389/fnhum.2021.737217.

44. Sandau US, Magaña SM, Costa J, Nolan JP, Ikezu T, Vella L J, et al. Recommendations for reproducibility of cerebrospinal fluid extracellular vesicle studies. J Extracell Vesicles. 2024;13(1):12397. doi: 10.1002/jev2.12397.

45. Xiang J, Hua Y, Xi G, Keep RF. Mechanisms of cerebrospinal fluid and brain interstitial fluid production. Neurobiol Dis. 2023;183:106159. doi:10.1016/j.nbd.2023.106159

46. Orešković D, Klarica M. A new look at cerebrospinal fluid movement. Fluids Barriers CNS. 2014;11:16. Published 2014 Jul 27. doi:10.1186/2045-8118-11-16.

47. Pykalyuk V.S, Bessalova Ye.Yu. Trach V.V., Kryvencov M.A., Kyselyov V.V., Shaymardanova L.R. Likvor yak gumoralne seredovyshche organism. Simpheropol, «ARIAL» 2010. – 192 с. (In Ukraine).

48. Reiter RJ, Sharma R, Cucielo MS, et al. Brain washing and neural health: role of age, sleep, and the cerebrospinal fluid melatonin rhythm. Cell Mol Life Sci. 2023;80(4):88. Published 2023 Mar 14. doi:10.1007/s00018-023-04736-5

49. Ghersi-Egea JF, Strazielle N, Catala M, Silva-Vargas V, Doetsch F, Engelhardt B. Molecular anatomy and functions of the choroidal blood-cerebrospinal fluid barrier in health and disease. Acta Neuropathol. 2018;135(3):337-361. doi:10.1007/s00401-018-1807-1

50. Xie J, Bruggeman A, De Nolf C, et al. Gut microbiota regulates blood-cerebrospinal fluid barrier function and Aβ pathology. EMBO J. 2023;42(17):e111515. doi:10.15252/embj.2022111515

51. Rasmussen MK, Mestre H, Nedergaard M. Fluid transport in the brain. Physiol Rev. 2022;102(2):1025-1151. doi:10.1152/physrev.00031.2020

Published

2024-12-30

Issue

Section

Anatomy and Histology

How to Cite

Morphofunctional characteristics of cerebrospinal fluid. (2024). Notes in Current Biology, 8(2). https://doi.org/10.29038/NCBio.24.2-8