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Cell Biology From a Self-organization Theory Perspective

Self-organization is a universal functioning property of cellular systems. Still, due to nonlinear nature of biological
entities, revealing the primary mechanisms of the process is an intricate task. Here we discuss recent progress in this
respect focusing on examples from cytoskeleton, cardiomyocytes and neurons.
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Introduction. It is widely understood to date, that dynamic self-organization dominates functioning of
cellular systems. A number of properties, comprising (i) continuous matter and energy exchange of cellular
system with environment, (ii) pronounced nonlinearities facilitated by strong feedback interactions between
system’s elements, (iii) time hierarchy for system’s variables that suggests existence of the order parameters,
and (iv) dissipation that accompanies the system’s functioning, were evidenced by experimental studies and also
by very successful modeling and support the application of the dynamic self-organization concepts in formulation
of Prigogine [1] in cell biology research [2-4]. It is important that nonlinear connectivity and variability within a
cellular system may be a requisite for health. Breakdown of these normal nonlinear rhythms may produce
«pathological rhythms», which may underlie disease states. Improved identification and recognition of such
rhythms may help in diagnosing illness at an earlier stage.

The number of research papers on self-organization effects in cell biology has mounted exponentially
during the last decades. This review summarizes some of the most interesting, recently reported phenomena
related to cytoskeleton, cardiac myocytes, and neurons. The study aims to pinpoint feedback mechanisms,
order parameters, and control parameters needed to completely define the self-organized behavior of a
particular system.

Materials and Methods. In preparation for this paper, a review of the scientific literature was
performed primarily by searching the PubMed database for the time period 1966 through 2017. Keywords
used in the search included «complex», «nonlinear dynamics», «systemsy, «self-organization», «feedback»,
«control parameter», and «order parameter».

Results and Discussion. Cytoskeleton. One of the central questions in modern cell biology is how
large macroscopic cellular structures are formed and maintained. It is unknown what determines the various
shapes and sizes of cellular organelles, why specific structures form in particular places, and how cellular
architecture is affected by function and vice versa. Recent discovery demonstrated how the size of the cells
could be controlled: motor proteins walk along the microtubules, reaching the end, at which point they
collectively depolymerize longer microtubules faster than shorter ones, providing feedback necessary to
control the length [5].

The cytoskeleton, an organized network of filamentous proteins, is an essential component of all
eukaryotic cells. It plays a major role in morphogenesis, transport, motility, and cell division. An important
cytoskeletal structure in various cell types is the cortical rings formed by bundles of filaments that wrap
around the cell. Such rings form within the cell cortex, a thin layer of filament network located close to the
cell membrane. As a result of continuous consumption of fuel (ATP) and related active processes, dynamic
patterns of filament orientation and density emerge via instabilities, leading to the formation of stationary and
oscillating rings via self-organization and coherency phenomena [3]. Recent experimental and theoretical
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studies of spatiotemporal dynamics of actomyosin networks exemplified nonlinear dynamical properties of
cytoskeleton [6], suggesting the global alignment of filament movement as the order parameter and using
actin concentrations and myosin surface densities as control parameters.

The periodic changes in the cell’s shape caused by interactions within a complex network of feedbacks
between the components of the cell were known for over 25 years [7]. Cells’ contractility relies on a
contractile complex of actin and myosin (actomyosin), in which myosin molecular motors convert chemical
energy from ATP hydrolysis into forces on actin filaments. Most recent works demonstrated that periodic
deformation of the shell shape could not be explained within the linear models of interaction between the
components of the cell, but could be readily attributed to effects of nonlinear couplings between various dynamic
modes of actomyosin networks, responsible for the cell motility. The motions of cells and organelles are highly
coordinated via mechanical signaling, driven by motor proteins moving along cytoskeletal filaments. Moreover,
actomyosin can self-organize and respond to mechanical stimuli through multiple types of biomechanical
feedback [8].

The cells’ contractility was suggested to occur above a threshold concentration of myosin motors and at
a critical distance between the bundles of motors and within a window of cross-link concentration. The
suggested mechanism of contraction was based on myosin filaments pulling neighboring bundles together
into a cooperative, aggregated structure. The microscopic dynamic models of experimentally observed
pulsatile behavior incorporated essential aspects of actomyosin self-organization: the asymmetric load
response of individual filaments, the correlated motor-driven events of motor-induced filament sliding, and
the complex competition of crosslinking molecules and motor filaments in the network [9].

The models developed thus far suggested various possibilities to define the order parameters that drive
the system’s dynamics — the number of motor proteins per cluster within a filament, free energy change for
the constituents, polarization of polar filaments, and geometrical variables (e.g. a cortical layer thickness).
These studies considered using the ATP, calcium, and myosin concentrations, connectivity and coupling in
the network of filaments and motor proteins, as well as the asymmetry of a filament load response as control
parameters that influence cytoskeleton nonlinear dynamics. A coupling between the activity of the cortical
layer and calcium channels in the outer membrane, which are gated by the local stretching of the cortical
layer, was also suggested as the control parameter. An increase of the extracellular calcium density inhances
the actomyosin contractility in the cortical layer, providing the necessary feedback and facilitating sustained
shape oscillations of the shell, see e.g. [10].

Cardiac Myocytes. Cardiac myocytes’ behavior is commonly considered in terms of dynamic self-
organization formalism, see e.g. [11]. Spatiotemporal calcium dynamics within the cell has been demonstrated to
occur as calcium sparks, short lived calcium waves, full calcium waves, and spiral waves initiated by groups
of calcium channels — calcium release units (CRUs) [11, 12]. At the whole-cell level, these sub-cellular
calcium dynamics give rise to the whole-cell calcium transients (and following beats) as a response to action
potential, with the transient strongly dependent on the form of the sub-cellular calcium waves [11].

Recent studies facilitated deeper insights into the mechanisms of calcium beat alternants in myocytes,
demonstrating how disordered behaviors dominated by stochastic processes at the subcellular level become
organized into beats alternating patterns at the whole cell level [13]. Calcium release by an individual CRU
was suggested to maintain the coherent pattern of release producing macroscopic alternations of calcium
release, stable against stochastic de-phasing. The coherence within individual CRU and between CRU’s was
found to be facilitated by local coupling through calcium diffusion or globally by interactions through the
membrane voltage. This result demonstrated that the emergence of calcium alternants at the whole cell level
is a strongly cooperative phenomenon mediated by the diffusive coupling of a large number of CRUs. The
transition from the «no alternants» to «sustained alternants» regime represents an onset of a new ordered
pattern in calcium release by the whole cell through bifurcations, a fundamental topic of dynamic self-
organization in open systems far from thermodynamic equilibrium.

Theoretical descriptions of self-organized behaviors on the sub-cellular level suggested the
transmembrane potential and intracellular calcium concentration as order parameters in nonlinear dynamical
models. On the cellular and tissue levels, the calcium alternants amplitude and number of synchronized sparks in
a single beat were used as the order parameters with a variety of control parameters — the coupling efficiency
between voltage and calcium concentration, coupling between neighboring CRUs, CRU recovering rate,
cell-to-cell conduction, and others.
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The pathological voltage oscillations, called early after-depolarizations, have been widely observed
under disease conditions in cardiac cells. Recent studies proved their bifurcation origin using Lyapunov
exponents analysis and other approaches [14]. During period pacing, chaos always occurs at the transition to
early after-depolarizations as the stimulation frequency decreases, providing a distinct explanation for the
irregular voltage oscillations observed in experiments.

Numerous works on spiral waves propagation in cardiac tissues discussed experimental observations
using the concepts of nonlinear dynamics. These features of cardiac myocytes were suggested to affect
functioning of a higher-level organization system — tissues and organs [15]. The cardiac myocytes as the
components of an organ alter the behavior of the heart and the heart in turn alters the behavior of the components,
yet both components and the heart are integrated in a higher multi-cellular structure, the organism. Apparently,
such multi-level organization with feedback supports usage of dynamic self-organization ideas to describe the
system function. However, it also calls for additional experimental and theoretical studies within the systems
biology paradigm, also emphasizing the importance of relating specific order parameters to biophysical properties
of calcium channels currents and pumps.

Neurons and Neural Networks. Early applications of nonlinear dynamics paradigm in neuroscience
targeted mainly higher organization level entities — neural networks, tissues, and the whole brain, emphasizing
the feedbacks between different complexity layers [16]. Accumulation of experimental data and further
theoretical developments facilitated deeper understanding of self-organization properties of neurons,
synapses, and neural networks, which we analyze briefly below.

Multiple experimental and theoretical works proved nonlinear dynamic behavior of single neurons (e.g. [17]
for review). In response to external stimuli, neurons generate electrical spikes and chemical signals,
switching between different functional modes (attractors), showing bistability, multistability, oscillations,
and chaotic behavior. Such switching between attractors is a typical dynamic self-organization process for a
system far from thermodynamic equilibrium. Various mathematical models were applied to describe such
emergent properties, allowing additional prediction of important functional details in neurons.

As an example, the models derived from Hodgkin-Huxsley approach [18] demonstrated the onset of
mutistability, oscillations, bursting, and deterministic chaos using the gating variables describing the mean
fraction of open gates of the sodium and potassium channels as the order parameters [19]. The models used
ion concentrations, transient input stimuli, coupling strength of the dendrite internal feedback connection,
and the feedback time delay as control parameters that switch the neuron between attractors. Using
Lyapunov exponents analysis of the chaotic neuron model, the internal state of the neuron — the generalized
structural variable — was suggested as the order parameter to model the onset of deterministic chaos, using
the strength of the refractoriness and external stimuli as control parameters.

Complex functional properties have been proven for the components of a neuron, calling for
application of nonlinear dynamics models on the lower organization level entities, see works on dynamics of
dendritic spines [20], dendritic branch-specific plasticity [21], and vesicle transport dynamics [22].

Synapses are the macromolecular structures responsible for transmitting electrical or chemical signals
between neurons. The first description by Hebb proposed a basic mechanism for synaptic plasticity,
suggesting the imperative role of repeated interactions between neurons to accumulate and increase synaptic
efficacy [23]. Such accumulation occurs through a versatile network of feedbacks acting on largely different
time scales within a synapse, thereby suggesting the slaving principle and providing prerequisites for
dynamic self-organization.

Synapses reveal complex dynamics that depend on the frequency and timing of presynaptic spike
firing, dendtritic spine dynamics, intracellular signaling, and other factors (e.g. [24, 25]). Most recent
biologically relevant models of synaptic plasticity emphasize their nonlinear dynamical behavior. One of the
nonlinear models introduced the mechanism that adjusts the synaptic coupling to the neural activity through
spike timing-dependent plasticity, allowing the synaptic strength to be either facilitated or depressed
depending on the order of the spikes of pre- and post-synaptic neurons [26].

Synaptic strength was shown to depend on a crosstalk coming from neighboring synapses. The crosstalk
may be due to various factors, e.g. dendritic diffusion of calcium or other intracellular diffusion processes,
creating bifurcations in developmental synaptic plasticity and tending to destroy it. The related nonlinear
dynamic models revealed switching to emergent functioning modes — oscillations or other attractors [27].
Some studies showed, however, that the crosstalk might facilitate synaptic strength leading to self-
organization of the synaptic connectivity. At an optimal crosstalk level, the amount of synaptic coupling
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gets maximal in a resonance-like manner preserving the existing level of collective dynamics in the brain by
neutralizing the impact of random perturbations [28]. The corresponding nonlinear dynamic models used
synaptic strength and synchronization parameter that characterized the phase difference of firing neurons as
the order parameters, with the magnitude of a random synaptic input (crosstalk) as one of the control parameters.

Multiple studies indicated that a cooperative amplification of the synaptic efficiency by dentritic spines
promotes nonlinear dendritic processing and associated forms of plasticity and storage, thus fundamentally
enhancing the computational capabilities of neurons [29]. The sign of synaptic plasticity was shown to be
regulated by the action potential feedback to the synapse, thereby providing a mechanism for associative
learning through a nonlinear dynamic mechanism [30].

Neural networks are multifunctional — they transduce sensory information, recover hidden signals, and
generate new information. Researchers unanimously agree that neural networks function as self-organized
systems far from the thermodynamic equilibrium. Below we will analyze only a few representative examples to
demonstrate important features of biologically relevant nonlinear dynamic models.

Self-organization in neural networks relies on feedback processes that optimize biologic functions by
correlating firing of groups of neurons to strengthen or modify synaptic connections between them, while the
strengthened connections will in turn amplify the correlated firing of the neurons. Multiple experimental and
theoretical studies explored nonlinear dynamic behaviors in groups and networks of neurons, confirming typical
self-organized properties of their functioning like cell self-assembly, formation of standing patterns and other
spatial structures, population bursts, consolidation of the synaptic changes, deterministic chaos, oscillating and
propagating waves in synaptically-coupled networks, etc., as well as analyzing conditions of switching between
different regimes of functioning (see e.g. [31] and references therein).

Successful models for excitatory and inhibitory neural networks were developed showing multi-
stability onset with oscillations, spiral waves, and chaos. These models used the portion of cells receiving at
least threshold excitation and average activity level of neuronal population as the order parameters [32]. The
control parameters included the external stimulus intensity, proportion of firing inhibitory cell, synaptic
firing rate, and number of synaptic connections.

Most of the models based on the chaotic neural networks used Lyapunov exponents and metric entropy
analysis to explore the onset and properties of deterministic chaos and other dynamic regimes in neural
networks, see for example [33].

The «self-organizing recurrent network» introduced recently combines several distinct forms of
(nonlinear) synaptic plasticity to explore spatio-temporal patterns that mimic the properties of the biological
systems [34]. It was shown that all of the analyzed plasticity mechanisms were essential for the onset of
emergent properties through self-organization. The model produced bursts, oscillations, steady-state
operation dependently on connections and switching of synaptic activities. The fraction of active excitatory
neurons was chosen as the order parameter, with the synaptic strength and extent of connections between
cells as the control parameters.

Other Examples at Cell and Tissue Levels. Multiple studies confirmed that the dynamic properties of
cellular structures are consistent with a role for self-organization in their formation, maintenance, and function;
therefore, self-organization is considered to be a general principle in tissue organization and function [4].

Meiotic nuclear oscillations crucial for proper chromosome pairing and recombination in yeast cells [35] as
well as cellular biochemical processes responsible for e.g. self-regulating gene networks and phosphorylation-
dephosphorylation signaling [36] were also widely discussed within the concept of dynamic self-
organization in far from thermodynamic equilibrium systems with feedback.

Conclusions and Further Perspectives. Considerable progress in experimental and theoretical studies
achieved during the last decades provides an additional motivation for development of realistic self-
organization models in cell biology. Future work will focus on the improved definition of order parameters
through multiple local interactions in cellular structures. The impact of widely different time scales of
system dynamics on order parameters will receive special attention. Another topic of interest will be
coordinated study of physiologically relevant models, which may favor a deeper understanding of the state
and development of diseases and thereby provide powerful tools for healthcare research and medicine

References

1. Prigogine I. Introduction to thermodynamics of irreversible processes / I. Prigogine. — Interscience Publishers :
New York, 1968. — 147 p.

84



PO3 A1 I1. Biogi3nka Ta dioximis. 13, 2017

2. Betal C. Intracellular Oscillations and Waves / C. Betal, K. Kruse // Annu. Rev. Condens. Matter Phys. —
2017.-V. 8. — P. 239-264.

3. Karsenti E. Self-organization in cell biology: a brief history / E. Karsenti // Nat. Rev. Mol. Cell Biol. — 2008. —
V. 9.-P.255-262.

4. Sasai Y. Cytosystems dynamics in self-organization of tissue architecture / Y. Sasai // Nature. — 2013. —
V. 493. — P. 318-326.

5. Varga V. Kinesin-8 Motors Act Cooperatively to Mediate Length-Dependent Microtubule Depolymerization /
V. Varga, C. Leduc, V. Bormuth, [etal.] // J. Howard Cell. — 2009. — V. 138. — P. 1174-1183.

6. Hussain S. Spatiotemporal Dynamics of Actomyosin Networks / S. Hussain, J. E. Molloy, S. M. Khan //
Biophys. J. —2013. — V. 105. — P. 1456-1465.

7. Bornens M. The cortical microfilament system of lymphoblasts displays a periodic oscillatory activity in the
absence of microtubules: implications for cell polarity / M. Bornens // J. Cell Biol. — 1989. — V. 109. —
P. 1071-1083.

8. Munjal A. A self-organized biomechanical network drives shape changes during tissue morphogenesis /
A. Munjal, J-M. Philippe, E. Munro [et al.] // Nature. — 524 2015. — V. 524, — P. 351-355.

9. Kaoehler S. Collective Dynamics of Active Cytoskeletal Networks / S. Koehler, V. Schaller, A. R. Bausch //
PL0oS ONE. — 2011. — V. 6. — doi:10.1371/journal.pone.0023798.

10. Coravos J. Actomyosin Pulsing in Tissue Integrity Maintenance during Morphogenesis / J. Coravos, F. Mason,
A. Martin // Trends in cell biology. — 2017. — V. 27. — P. 276-283.

11. Weiss J. N. From Pulsus to Pulseless: The Saga of Cardiac Alternans / J. N. Weiss // Circ. Res. — 2006. —
V. 98. - P. 1244-1253.

12. Hernandez-Hernandez G. Role of connectivity and fluctuations in the nucleation of calcium waves in cardiac
cells / G. Hernandez-Hernandez, E. Alvarez-Lacalle, Y. Shiferaw // Phys. Rev. E. — 2015. — V. 92. —
doi: 10.1103/PhysRevE.92.052715.

13. Skardal P. S Unidirectional Pinning and Hysteresis of Spatially Discordant Alternans in Cardiac Tissue /
P. S. Skardal, A. Karma, J. G. Restrepo // Phys. Rev. Lett. — 2012. — V. 108. — doi:10.1103/PhysRevLett.108.108103.

14. Tran D. Bifurcation and Chaos in a Model of Cardiac Early Afterdepolarizations / D. Tran, D. Sato,
A. Yochelis [et al.] // Phys. Rev. Lett. — 2009. — V. 102. — d0i:10.1103/PhysRevLett.102.258103.

15. Smith N. Mathematical modelling of the heart: cell to organ / N. Smith, P. Mulquiney, M. Nash [et al.] //
Chaos solitons and fractals. — 2002. — V, 13. — P. 1613-1621.

16. Willshaw D. How patterned neural connections can be set up by self-organization / D. Willshaw, C. Malsburg /
Proc. R. Soc. Ser. B-Biol. Sci. — 1976. — V. 194. — P. 431-445.

17. Breakspear M. Dynamic models of large-scale brain activity / M. Breakspear // Nature Neuroscience. — 2017. —
V. 20. - P. 340-352.

18. Hodgkin A. A quantitative description of membrane current and its application to conduction and excitation
in nerve / A. Hodgkin, A. Huxley // Journal of Physiology-London. — 1952. — V. 117(4). — P. 500-544.

19. Li Y. Spontaneous spiking in an autaptic Hodgkin-Huxley setup / Y. Li, G. Schmid, P. Hanggi [et al.]. —
Phys. Rev. E. —2010. — V. 82. — doi:10.1103/PhysRevE.82.061907.

20. Tyler W. The mechanobiology of brain function / W. Tyler // Nature Reviews Neuroscience. — 2012. — V. 13. —
P. 867-878.

21. Legenstein R. Branch-Specific Plasticity Enables Self-Organization of Nonlinear Computation in Single
Neurons / R. Legenstein, W. Maass // J. Neurosci. — 2011. — V. 31. — P. 10787-10802.

22. Ahmed W. W. Measuring nonequilibrium vesicle dynamics in neurons under tension / W. W. Ahmed,
B. J. Williams, A. M. Silver [et al.] // Lab. Chip. — 2013. — V. 13. — P. 570-578.

23. Hebb D. O. The organization of behavior: A neuropsychological theory / D. O. Hebb. — New York : John
Wiley and Sons, Inc, 1949. — 335 p.

24. Hennig M. H. Theoretical models of synaptic short term plasticity / M. H. Hennig // Front. Comput. Neurosci. —
2013. - V. 7. —do0i:10.3389/fncom.2013.00045

25. Friauf E. Synaptic plasticity in the auditory system: a review / E. Friauf, A. Fischer and M. Fuhr // Cell Tissue
Res. — 2015. - V. 361. — P. 177-213.

26. Caporale N. Spike timing-dependent plasticity: A Hebbian learning rule / N. Caporale, Y. Dan // Annu. Rev.
Neurosci. — 2008. — V. 31. — P. 25-46.

27. Elliott T. Cross-Talk Induces Bifurcations in Nonlinear Models of Synaptic Plasticity / T. Elliott // Neural
Comput. — 2012. — V. 24. — P. 455-522.

28. Popovych O. V. Self-organized noise resistance of oscillatory neural networks with spike timing-dependent
plasticity / O. V. Popovych, S. Yanchuk, P. A. Tass // Sci. Rep. —2013. — V. 3. — N 2926. — doi:10.1038/srep02926.

29. Harnett M. T. Synaptic amplification by dendritic spines enhances input cooperativity / M. T. Harnett,
J. K. Makara, N. Spruston [et al.] // Nature. — 2012. — V. 491. — P. 599-602.

30. Sjostrom P. J. A cooperative switch determines the sign of synaptic plasticity in distal dendrites of neocortical
pyramidal neurons / P. J. Sjostrom, M. Hausser // Neuron. — 2006. — V. 51. — P, 227-238.

85



Hayxkoeuit éicnux CxiOHO€8pORelicbK020 HAUioHanbHo20 yHieepcumemy imeni Jleci Ykpainku

31. Strogatz S. H. Exploring complex networks / S. H. Strogatz // Nature. — 2001. — V. 410. — P. 268-276.

32. Huang X. Spiral Waves in Disinhibited Mammalian Neocortex / X. Huang // J. Neurosci. — 2004. — V. 24. —
P. 9897-9902.

33. Hirata Y. Chaos in neurons and its application: Perspective of chaos engineering / Y. Hirata, M. Oku, K. Aihara //
Chaos: An Interdisciplinary Journal of Nonlinear Science. — 2012. — V. 22. — Ne 047511. — doi:http://dx.
doi.org/ 10.1063/1.4738191.

34. Zheng P. Network Self-Organization Explains the Statistics and Dynamics of Synaptic Connection Strengths
in Cortex / P. Zheng, C. Dimitrakakis, J. Triesch // Plos Comput. Biol. — 2013. — V. 9. — doi:10.1371/journal.
pchi.1002848.

35. Pavin N. Self-Organization and Forces in the Mitotic Spindle./ N. Pavin, I. Tolic’ / Annu. Rev. Biophys. —
2016.— V. 45. - P. 279-98.

36. Qian H. Cooperativity in Cellular Biochemical Processes: Noise-Enhanced Sensitivity, Fluctuating Enzyme,
Bistability with Nonlinear Feedback, and Other Mechanisms for Sigmoidal Responses / H. Qian // Annu. Rev.
Biophys. —2012. — V. 41. — P. 179-204.

I'yma Tersna, I'yma Onexcanap. Kiitunna 6iosorist 3 morasigy teopii camoopranizanii. Camoopranizarito
BU3HAHO YHIBEPCAJbHOIO BIACTHUBICTIO, SIKa MpPHTaMaHHAa BIAKPUTHUM CHUCTEMaM, 30KpeMa OioJOoTidYHMM 00’e€KTam i
CKJIQJIHUKIB, CIIPUYMHIOE TMEpeXifi CHCTEMH 10 HOBOTO BIOPSIKOBAaHOTO crany. Cucrema (yHKIIOHY€E B CTaHi, Jaje-
KOMY BiJl TEpPMOJMHAMIYHOI PIBHOBAard, a MEPEX0au MK CTAHAMH OIMHCYIOThCS 32 JOMOMOTOK HENiHIHHUX MOCICH.
AHai3 Takoi MMOBEIIHKHU Aa€ MiACTaBy 3i0paTH KOPHUCHY iH(POpPMAIIiI0 PO eMEPIKSHTHI BIACTUBOCTI MIEBHOI CHCTEMH,
110, K MIPAaBHUJIO, HEMOYKIIMBO 3pOOUTH IHITNMH 3aco0aMu. Y IIbOMY OTJIsiAL 3i0paHo Jesiki HaifOLTbIT IiKaBi 3 HEJaBHO
OITyOJTIKOBAHUX SIBHIL, ITOB’S3aHMX i3 AMHAMIYHOIO CaAMOOPTaHi3amiero B KIITHHHIN Oiojorii. OCHOBHY yBary MpHAUICHO
mporiecaM, sIKi BifOyBaroThCsA B IUTOCKENETI, KapaioMionuTax Ta HelipoHaX. [IpoaHanizoBaHO MEXaHI3MH 3BOPOTHOTO
3B’513Ky, KOHTPOJIIOIOUi ITApaMeTPpH W MmapaMeTpH TOPSIKY, HEOOXiIHI U1 MOBHOI XapaKTepPUCTUKH CaMOOPTaHi30BaHOT
MOBEIIHKU KOKHOI CUCTEMH.

KoarouoBi ciioBa: HeniHiliHA cucTeMa, KIITHHA, CaMOOPTaHi3allisi, apaMeTp MOPSIKY.

I'yma Taresina, I'yma Aunexcanap. Kinerounasi 6Mo10rusi ¢ TOUYKM 3peHHsi TeoOpuu camoopranusanun. Ca-
MOOpPraHM3anusl NpU3HAHA YHUBEPCAIBHBIM CBONHCTBOM, IMPUCYLIUM OTKPBITBIM CHCTEMaM, B YaCTHOCTH OHMOJIOTH-
YECKUM O0BEKTaM W XMBBIM opraHu3maM. [10TOK SHEpriuM WM BELIECTBA, MPOTEKAIOIINI Yepe3 CUCTEMY, BCIIEICTBHE
KOOTIEPAaTUBHOTO B3aMMOJCHCTBUS €€ COCTaBIIOIINX, MPUBOIUT K IEPEXOay CHUCTEMBI B HOBOE YIOPSIOYCHHOE
cocrosiare. Cucrema (YHKIOHHPYET B COCTOSIHHM, JAJIEKOM OT TEPMOAMHAMHYECKOTO PaBHOBECHS, a TEPEXOIbI MEKILY
COCTOSTHHSIMH OITHCBHIBAIOTCSI C IOMOIIBIO HEIMHEHHBIX MoJeleld. AHAIM3 Takoro IMOBEAEHHS IO3BOJSIET coOpaTh
MOJIE3HYI0 MH(OPMALMIO 00 SMEP/IKEHTHBIX CBOMCTBAX ONPEIEIEHHON CHCTEMBbI, Yero, Kak MpaBUJIO, HEBO3MOXKHO
JIOCTHTHYThH APYTHMHU criocodamu. B 3ToM 0030pe coOpaHbl HEKOTOpBIE HanOoJIee HHTEPECHbIE N3 HEJaBHO OIyOJIMKO-
BaHHBIX SIBJICHUH, CBSI3aHHBIX C AMHAMUYECKOH caMOOpraHM3aliell B KJIeTouHOH Omonornu. Ocoboe BHUMaHHE y[e-
JIsieTcs TpoleccaM, NMPOTEKAaoIIUM B IIUTOCKENeTe, KapANOMHOIMTaX M HeWpoHax. [IpoaHann3npoBaHbl MEXaHU3MBI
00paTHOM CBsI3M, KOHTPOJIMPYIOIKE NapaMeTpbl U IapaMeTphl MOps/iKa, HEOOXOAUMBIE JUIsl TTOJTHOM XapaKTepUCTUKU
CaMOOPTaHN30BaHHOTO MOBECHUS KaXI0H U3 CHCTEM.

KiroueBble c10Ba: HeNMHEHAsA CHCTEMa, KJIeTKa, CAMOOpTraHU3aIys, ITapaMeTp MopsaKa.
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YK 633.88(477.82):665.123 Mapis Ocumn,
Opiit Ocun
Bui kap0oHOBi KHCJ10TH 0J1i1 HACIHHSI YOPHULi 3BHYAITHOT
(Vaccinium myrtillus L.)

I3 Haciuus gopHuii 3BuyaiiHoi (Vaccinium myrtillus L.) MerosomM BHYEpITHOT eKCTpaKIlii H-TeKCAHOM OTPUMAaHO
OJTIFO CBITJIO-’)KOBTOT'O KOJILOPY 3 MOKa3HUKOM 3asomiieHHs 1,4742. Buxin cranButh 18 %.
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